CHAPTER 1

Relations and Functions

Question 1.

The function $f: A \rightarrow B$ defined by $f(x)=4 x+7, x \in R$ is
(a) one-one
(b) Many-one
(c) Odd
(d) Even

Question 2.
The function $f: R \rightarrow R$ defined by $f(x)=3-4 x$ is
(a) Onto
(b) Not onto
(c) None one-one
(d) None of these

Question 3.
The number of objective functions from set A to itself when A contains 106 elements is
(a) 106
(b) $(106)^{2}$
(c) 106 !
(d) 2^{106}

Question 4.
If $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ is such that $f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log x$, then the value of $[h o(g o f)](x)$, if $x=\pi \sqrt{ } 2$ will be
(a) 0
(b) 1
(c) -1
(d) 10

Question 5.
If $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ are such that $f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log x$, then the value of (go (foh)) (x), if $x=1$ will be
(a) 0
(b) 1
(c) -1
(d) π

Question 6.

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as $a R b$ if a is congruent to $b \forall a, b \in T$.
Then R is
(a) reflexive but not transitive
(b) transitive but not symmetric
(c) equivalence
(d) None of these

Question 7.

Let us define a relation R in R as $a R b$ if $a \geq b$. Then R is
(a) an equivalence relation
(b) reflexive, transitive but not symmetric
(c) symmetric, transitive but not reflexive
(d) neither transitive nor reflexive but symmetric

Question 8.
Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1$, $2),(2,3),(1,3)\}$. Then R is
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) symmetric and transitive
(d) neither symmetric, nor transitive

Question 9
Let $f: R \rightarrow R$ be defind by $f(x)=1 x \forall x \in R$. Then f is
(a) one-one
(b) onto
(c) bijective
(d) f is not defined

Question 10.
Let R be the relation "is congruent to" on the set of all triangles in a plane is
(a) reflexive
(b) symmetric
(c) symmetric and reflexive
(d) equivalence

CHAPTER 2

Inverse Trigonometric Functions

Question 1.
The value of $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{7}{8}\right)$ is
(a) $\tan ^{-1}\left(\frac{7}{8}\right)$
(b) $\cot ^{-1}(15)$
(c) $\tan ^{-1}(15)$
(d) $\tan ^{-1}\left(\frac{25}{24}\right)$

Question 2.
The value of $\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)$ is
(a) π
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{\pi}{4}$

Question 3.
If $\tan ^{-1}(\cot \theta)=2 \theta$, then θ is equal to
(a) $\pi 3$
(b) $\pi 4$
(c) $\pi 6$
(d) None of these

Question 4.
$\cot \left(\pi 4-2 \cot ^{-1} 3\right)=$
(a) 7
(b) 6
(c) 5
(d) None of these

Question 5.
$\sin ^{-1}\left(\frac{-1}{2}\right)$
(a) $\frac{\pi}{3}$
(b) $-\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) $-\frac{\pi}{6}$

Question 6.

$\tan ^{-1} 1+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$
(a) $\frac{2 \pi}{3}$
(b) $\frac{3 \pi}{4}$
(c) $\frac{\pi}{2}$
(d) 6π

Question 7.

If $\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x$, then $\sin x$ is equal to
(a) $\tan ^{2}\left(\frac{\alpha}{2}\right)$
(b) $\cot ^{2}\left(\frac{\alpha}{2}\right)$
(c) $\tan \alpha$
(d) $\cot \left(\frac{\alpha}{2}\right)$

Question 8.

$\sin \left\{2 \cos ^{-1}\left(\frac{-3}{5}\right)\right\}$ is equal to
(a) $\frac{6}{25}$
(b) $\frac{24}{25}$
(c) $\frac{4}{5}$
(d) $-\frac{24}{25}$

Question 9.
The value of $\cos ^{-1}\left(\cos \left(\frac{33 \pi}{5}\right)\right)$ is
(a) $\frac{3 \pi}{5}$
(b) $\frac{-3 \pi}{5}$
(c) $\frac{\pi}{10}$
(d) $\frac{-\pi}{10}$

Question 10.
The value of $\sin \left[\cos ^{-1}\left(\frac{7}{25}\right)\right]$ is
(a) $\frac{25}{24}$
(b) $\frac{25}{7}$
(c) $\frac{24}{25}$
(d) $\frac{7}{24}$

Chapter 3

Matrices

Question 1.
If A and B are symmetric matrices of the same order, then
(a) $A B$ is a symmetric matrix
(b) A - Bis askew-symmetric matrix
(c) $A B+B A$ is a symmetric matrix
(d) $A B-B A$ is a symmetric matrix

Question 2.
If $A=[32 x+3 x-1 x+2]$ is a symmetric matrix, then $x=$
(a) 4
(b) 3
(c) -4
(d) -3

Question 3.
If A is a square matrix, then $A-A^{\prime}$ is a
(a) diagonal matrix
(b) skew-symmetric matrix
(c) symmetric matrix
(d) none of these

Question 4.
If A is any square matrix, then which of the following is skewsymmetric?
(a) $A+A^{\top}$
(b) $A-A^{\top}$
(c) $A A^{\top}$
(d) $A^{\top} A$

Question 5.
If $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}\alpha & \beta \\ \beta & \alpha\end{array}\right]$, then
(a) $\alpha=a^{2}+b^{2}, \beta=a b$
(b) $\alpha=a^{2}+b^{2}, \beta=2 a b$
(c) $\alpha=a^{2}+b^{2}, \beta=a^{2}-b^{2}$
(d) $\alpha=2 a b, \beta=a^{2}+b^{2}$

Question 6.
If $A=\lceil[\| 100210 \times 01\rceil] \mid$ and $B=\left\lceil\left[\left.\right|_{100-210 y 01}\right]\right] \mid$ and $A B=I_{3}$, then $x+$ y equals
(a) 0
(b) -1
(c) 2
(d) None of these

Question 7.

If $A=[1334]$ and $A^{2}-K A-5 I=0$, then $K=$
(a) 5
(b) 3
(c) 7
(d) None of these

Question 8.
If $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$, then $(A B)^{\mathrm{T}}$ is equal
to
(a) $\left[\begin{array}{cc}-3 & -2 \\ 10 & 7\end{array}\right]$
(b) $\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]$
(c) $\left[\begin{array}{ll}-3 & 7 \\ 10 & 2\end{array}\right]$
(d) None of these

Question 9. If matrix $\mathrm{A}=\left[\begin{array}{ccc}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real
positivenumbers, $a b c=1$ and $A^{\top} A=I$, then the value of $a^{3}+b^{3}+c^{3}$ is
(a) 1
(b) 2
(c) 3
(d) 4

Question 10.
Let $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, then the values of x and y respectively are
(a) $\frac{-1}{11}, \frac{2}{11}$
(b) $\frac{-1}{11}, \frac{-2}{11}$
(c) $\frac{1}{11}, \frac{2}{11}$
(d) $\frac{1}{11}, \frac{-2}{11}$

Chapter 4

Determinants

Question 1.

Find the adjoint of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
(a) $\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(d) $\left[\begin{array}{cc}1 & -2 \\ -3 & 4\end{array}\right]$

Question 2.
Find x, if $\left[\begin{array}{ccc}1 & 2 & x \\ 1 & 1 & 1 \\ 2 & 1 & -1\end{array}\right]$ is singular
(a) 1
(b) 2
(c) 3
(d) 4

Question 3.
The area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. The value of k will be
(a) 9
(b) 3
(c) -9
(d) 6

Question 4.
For what value of x , matrix $\left[\begin{array}{cc}6-x & 4 \\ 3-x & 1\end{array}\right]$ is a singular matrix?
(a) 1
(b) 2
(c) -1
(d) -2

Question 5.

Compute (AB$)^{-1}$, If
$A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & -1 \\ 1 & 0 & 2\end{array}\right]$
(a) $\frac{1}{19}\left[\begin{array}{ccc}16 & 12 & 1 \\ 21 & 11 & -7 \\ 10 & -2 & 3\end{array}\right]$ (b) $\frac{1}{19}\left[\begin{array}{ccc}16 & 12 & 10 \\ 21 & 11 & -2 \\ 1 & -7 & 3\end{array}\right]$
(c) $\frac{1}{19}\left[\begin{array}{ccc}16 & 12 & 1 \\ -21 & -11 & 7 \\ 10 & -2 & 3\end{array}\right]$
(d) $\frac{1}{19}\left[\begin{array}{ccc}16 & -21 & 1 \\ 21 & 11 & 7 \\ 10 & -2 & 3\end{array}\right]$

Question 6.
If $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ then $\frac{A^{2}-3 I}{2}=$
(a) A^{-1}
(b) 2 A
(c) $2 A^{-1}$
(d) $\frac{3}{2} A^{-1}$

Question 7.

If $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right]$, then find $(A B)^{-1}$.
(a) $\frac{1}{11}\left[\begin{array}{cc}14 & 5 \\ 5 & 1\end{array}\right]$
(b) $\frac{1}{11}\left[\begin{array}{cc}14 & -5 \\ -5 & 1\end{array}\right]$
(c) $\frac{1}{11}\left[\begin{array}{cc}1 & 5 \\ 5 & 14\end{array}\right]$
(d) $\frac{1}{11}\left[\begin{array}{cc}1 & -5 \\ -5 & 14\end{array}\right]$

Question 8.
Find a 2×2 matrix B such that $B=\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$
(a) $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}4 & 2 \\ 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
(d) $\left[\begin{array}{cc}1 & -2 \\ -1 & 4\end{array}\right]$

Question 9.
A non-trivial solution of the system of equations $x+\lambda y+2 z=0,2 x+$ $\lambda z=0,2 \lambda x-2 y+3 z=0$ is given by $x: y: z=$
(a) $1: 2:-2$
(b) $1:-2: 2$
(c) $2: 1: 2$
(d) $2: 1:-2$

Question 10.
If $\left[\begin{array}{cc}2 x & 5 \\ 8 & x\end{array}\right]=\left[\begin{array}{cc}6 & -2 \\ 7 & 3\end{array}\right]$, then the value of x is
(a) 3
(b) ± 3
(c) ± 6
(d) 6

Question 11.
Find the area of the triangle with vertices $P(4,5), Q(4,-2)$ and $R(-6$, 2).
(a) 21 sq. units
(b) 35 sq. units
(c) 30 sq. units
(d) 40 sq. units

Chapter 5

Continuity andDifferentiability
Question 1.
The derivative of

$$
\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \text { with respect to } \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \text { is }
$$

(a) 0
(b) 1
(c) $\frac{1}{1-x^{2}}$
(d) $\frac{1}{1+x^{2}}$

Question 2.
If $x=a \sin \theta$ and $y=b \cos \theta$, then $\frac{d^{2} y}{d x^{2}}$ is equal to
(a) $\frac{a}{b^{2}} \sec ^{2} \theta$
(b) $\frac{b}{a} \sec ^{2} \theta$
(c) $\frac{b}{a^{2}} \sec ^{3} \theta$
(d) $-\frac{b}{a^{2}} \sec ^{3} \theta$

Question 3.
If $y=a^{x}, b^{2 x-1}$, then $\frac{d^{2} y}{d x^{2}}$ is
(a) $y^{2} \cdot \log a b^{2}$
(b) $y \cdot \log a b^{2}$
(c) $y \cdot\left(\log a b^{2}\right)^{2}$
(d) $y \cdot\left(\log a^{2} b\right)^{2}$

Question 4.
If $\sqrt{(x+y)}+\sqrt{(y-x)}=a$, then $\frac{d y}{d x}=$
(a) $\frac{\sqrt{(x+y)}-\sqrt{y-x}}{\sqrt{y-x}+\sqrt{x+y}}$
(b) $\frac{2 \sqrt{x-y}}{\sqrt{x+y}-\sqrt{x-y}}$
(c) $\frac{x+y+\sqrt{x y}}{\sqrt{x+y}}$
(d) $\frac{x^{2}+y^{2}+2 x y}{x^{2}+y^{2}}$

Question 5.
If $x y^{2}=a x^{2}+b x y+y^{2}$, then find $\frac{d y}{d x}$
(a) $\frac{2 a x+b y+y^{2}}{2 x y+b x+2 y}$
(b) $\frac{2 a x+b y-y^{2}}{2 x y-b x-2 y}$
(c) $\frac{a x+b y-x y}{x y+x^{2}+y^{2}}$
(d) $\frac{2 x^{2}+a x y+y^{2}}{x^{2}+y^{2}+2 x y}$

Question 6.
If $y=e^{\frac{1}{2} \log \left(1+\tan ^{2} x\right)}$, then $\frac{d y}{d x}$ is equal to
(a) $\frac{1}{2} \sec ^{2} x$
(b) $\sec ^{2} x$
(c) $\sec x \tan x$
(d) $e^{\frac{1}{2} \log \left(1+\tan ^{2} x\right)}$

Question 7.
Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left(0, \frac{\pi}{2}\right)$. If $\mathrm{f}(\mathrm{x})$ is continuous in $\left(0, \frac{\pi}{2}\right)$, then $f\left(\frac{\pi}{4}\right)=$
(a) 1
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) -1

Question 8.
If $f(x)=-\sqrt{25-x^{2}}$, then $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$ is equal to
(a) $\frac{1}{24}$
(b) $\frac{1}{5}$
(c) $-\sqrt{24}$
(d) $\frac{1}{\sqrt{24}}$

Question 9.
If $x^{m} y^{n}=(x+y)^{m+n}$, then $\frac{d y}{d x}$ is equal to
(a) $\frac{x+y}{x y}$
(b) $x y$
(c) $\frac{x}{y}$
(d) $\frac{y}{x}$

Question 10.
If $x^{y} \cdot y^{x}=16$, then the value of $d y d x$ at $(2,2)$ is
(a) -1
(b) 0
(c) 1
(d) none of these

Chapter 6

Application of Derivatives

Question 1.

Find the local minimum value of the function $f(x)=\sin ^{4} x+\cos ^{4} x, 0<x$ $<\pi 2$
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{1}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) 0

Question 2.
Find the points of local maxima and local minima respectively for the function $f(x)=\sin 2 x-x$, where
$-\pi 2 \leq x \leq \pi 2$
(a) $-\pi 6, \pi 6$
(b) $\pi 3,-\pi 3$
(c) $-\pi 3, \pi 3$
(d) $\pi 6,-\pi 6$

Question 3.
If $y=a x-b(x-1)(x-4)$ has a turning point $P(2,-1)$, then find the value of a and b respectively.
(a) 1,2
(b) 2,1
(c) 0,1
(d) 1,0

Question 4.
If $y=x^{3}+x^{2}+x+1$, then y
(a) has a local minimum
(b) has a local maximum
(c) neither has a local minimum nor local maximum
(d) None of these

Question 5.
It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value on the interval $[0,2]$. Find the value of a.
(a) 100
(b) 120
(c) 140
(d) 160

Question 6.
Find the height of the cylinder of maximum volume that can be is cribed in a sphere of radius a.
(a) $\frac{2 a}{3}$
(b) $\frac{2 a}{\sqrt{3}}$
(c) $\frac{a}{3}$
(d) $\frac{a}{3}$

Question 7.
Find the volume of the largest cylinder that can be inscribed in a sphere of radius rcm .
(a) $\frac{\pi r^{3}}{3 \sqrt{3}}$
(b) $\frac{4 \pi r^{2} h}{3 \sqrt{3}}$
(c) $4 \pi r^{3}$
(d) $\frac{4 \pi r^{3}}{3 \sqrt{3}}$

Question 8.
The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is
(a) scalene
(b) equilateral
(c) isosceles
(d) None of these

Question 9.
$2 x^{3}-6 x+5$ is an increasing function, if
(a) $0<x<1$
(b) $-1<x<1$
(c) $x<-1$ or $x>1$
(d) $-1<x<-\frac{1}{2}$

Question 10.
The function $f(x)=x^{3}+6 x^{2}+(9+2 k) x+1$ is strictly increasing for all x, if
(a) $k>\frac{3}{2}$
(b) $k<\frac{2}{2}$
(c) $\mathrm{k} \geq \frac{3}{2}$
(d) $k \leq \frac{3}{2}$

Question 11.
The tangent to the parabola $x^{2}=2 y$ at the point $\left(1, \frac{1}{2}\right)$ makes with the x-axis an angle of
(a) 0°
(b) 45°
(c) 30°
(d) 60°

Chapter 7

INTEGRALS

Question 1.

Evaluate: $\int_{0}^{\pi / 4} \sqrt{1-\sin 2 x d x}$
(a) $\sqrt{ } 2-1$
(b) $\sqrt{ } 2+1$
(c) $\sqrt{ } 2$

Question 2.
Evaluate: $\int_{0}^{2 \pi} \sin \left(\frac{\pi}{4}+\frac{\pi}{2}\right) d x$
(a) $-2 \sqrt{ } 2$
(b) -2
(c) $\sqrt{ } 2$
(d) $2 \sqrt{ } 2$

Question 3.
Evaluate : $\int_{0}^{\pi / 2} \frac{\cos \theta}{(1+\sin \theta)(2+\sin \theta)} d \theta$
(a) $\log \left(\frac{4}{3}\right)$
(b) $\log \left(\frac{3}{4}\right)$
(c) $\log 4+\log 3$
(d) None of these

Question 4.
Evaluate : $\int_{0}^{1} \frac{x \tan ^{-1} x}{\left(1+x^{2}\right)^{3 / 2}} d x$
(a) $\frac{4-\pi}{2 \sqrt{2}}$
(b) $\frac{4+\pi}{2 \sqrt{2}}$
(c) $\frac{4-\pi}{4 \sqrt{2}}$
(d) None of these

Question 5.
Evaluate : $\int_{0}^{\pi / 2} \frac{1}{2 \cos x+4 \sin x} d x$
(a) $\sqrt{5} \log \left(\frac{3+\sqrt{5}}{2}\right)$
(b) $\frac{1}{\sqrt{55}} \log \left(\frac{3-\sqrt{5}}{}\right)$
(c) $\frac{1}{\sqrt{5}} \log \left(\frac{3+\sqrt{5}}{2}\right)$
(d) None of these

Question 6.

Evaluate : $\int\left(e^{x \log a}+e^{a \log x}+e^{\log a}\right) d x$
(a) $\frac{a^{x}}{\log a}+\frac{x^{a+1}}{a+1}+a^{a} x+C$
(b) $\frac{a^{x}}{\log a}+\frac{x^{a+1}}{a-1}+a x^{a}+C$
(c) $\frac{a^{x}}{\log a}+\frac{x^{a}}{a+1}+a x^{a}+C$
(d) $\frac{a^{x}}{\log x}+\frac{x^{a+1}}{a+1}+a^{a} x+C$

Question 7.

Evaluate : $\int \cos ^{3} x e^{\log \sin x} d x=\int \cos ^{3} x \sin x d x$
(a) $\frac{\cos ^{4} x}{4}+C$
(b) $-\frac{\cos ^{4} x}{4}+C$
(c) $\frac{\cos ^{4} x}{4 x}+C$
(d) None of these

Question 8.

Evaluate : $\int \frac{1}{\sqrt{\sin ^{3} x \cos ^{5} x}} d x$
(a) $\frac{2}{\sqrt{\tan x}}-\frac{2}{3}(\tan x)^{3 / 2}+C$
(b) $-\frac{2}{\sqrt{\tan x}}+\frac{2}{3}(\tan x)^{3 / 2}+C$
(c) $-\frac{2}{\sqrt{\tan x}}-\frac{2}{3}(\tan x)^{2 / 3}+C$ (d) None of these

Question 9.

Evaluate : $\int \frac{x^{3}+x}{x^{4}-9} d x$
(a) $\frac{1}{4} \log \left|x^{4}-9\right|+\frac{1}{12} \log \left|\frac{x^{2}+3}{x^{2}-3}\right|+C$
(b) $\frac{1}{4} \log \left|x^{4}-9\right|-\frac{1}{12}\left|\frac{x^{2}-3}{x^{2}+3}\right|+C$
(c) $\frac{1}{4} \log \left|x^{4}-9\right|+\frac{1}{12} \log \left|\frac{x^{2}-3}{x^{2}+3}\right|+C$
(d) None of these

Question 10.

Evaluate : $\int_{0}^{\pi / 2} \sqrt{\cos \theta} \sin ^{3} \theta d \theta$
(a) $\frac{8}{21}$
(b) $\frac{7}{21}$
(c) $\frac{8}{23}$
(d) $\frac{7}{23}$

Question 23.
Evaluate : $\int_{0}^{\pi / 2} \frac{\cos x}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{3}} d x$
(a) $2-\sqrt{2}$
(b) $2+\sqrt{2}$
(c) $3+\sqrt{3}$
(d) $3-\sqrt{3}$

Chapter 8

Application of Integrals

Question 1.
The area enclosed by the parabola $y^{2}=2 x$ and tangents through the point $(-2,0)$ is
(a) 3 sq. units
(b) 4 sq. units
(c) $\frac{4}{3}$ sq. units
(d) $\frac{8}{3}$ sq. units

Question 2.
The area bounded by the lines $y=4 x+5, y=5-x$ and $4 y=x+5$ is
(a) $\frac{15}{2}$ sq. units
(b) $\frac{9}{2}$ sq. units
(c) $\frac{13}{2}$ sq. units
(d) None of these

Question 3.
The area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$ is
(a) $\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$ sq. units
(b) $\frac{\sqrt{2}}{6}-\frac{1}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$ sq. units
(c) $\frac{3}{2}$ sq. units
(d) $\frac{7}{2}$ sq. units

Question 4.
Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x$
+12 .
(a) 27 sq. units
(b) 28 sq. units
(c) 54 sq. units
(d) 30 sq. units

Question 5.

The area included between the curves $x^{2}=4 b y$ and $y^{2}=4 a x$
(a) 16 ab sq. units
(b) $\frac{16 a b}{3}$ sq. units
(c) 4ab sq. units
(d) $16 \pi \mathrm{ab}$ sq. units

Question 6.

The area of the ellipse $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{9^{2}}=1$ is
(a) 6π sq. units
(b) $\frac{\pi\left(a^{2}+b^{2}\right)}{4}$ sq. units
(c) $p(a+b)$ sq. units
(d) none of these

Question 7.

The area bounded by the curve $2 x^{2}+y^{2}=2$ is
(a) π sq. units
(b) $\sqrt{ } 2 \pi$ sq. units
(c) $\frac{\pi}{2}$ sq. units
(d) 2π sq. units

Question 8.
Area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}==1$ is
(a) $4 \pi a b$ sq.units
(b) $2 \pi \mathrm{ab}$ sq.units
(c) $\pi a b$ sq.units
(d) $\frac{\pi a b}{2}$ sq.units

Question 9.
The area enclosed by curve $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
(a) 10π sq. units
(b) 20π sq. units
(c) 5π sq. units
(d) 4π sq. units

Question 10.
The area bounded by the curves $y=\sin x, y=\cos x$ and $x=0$ is
(a) $(\sqrt{ } 2-1)$ sq. units
(b) 1 sq. units
(c) $\sqrt{ } 2$ sq. units
(d) $(1+\sqrt{ } 2)$ sq. units

Question 11.
The area bounded by the lines $y=|x-2|, x=1, x=3$ and the x-axis is
(a) 1 sq. units
(b) 2 sq. units
(c) 3 sq. units
(d) 4 sq. units

Question 12.
Area of the region bounded by the curve $y=x^{2}$ and the line $y=4$ is
(a) $\frac{11}{2}$ sq. units
(b) $\frac{32}{3}$ sq. units
(c) $\frac{43}{3}$ sq. units
(d) $\frac{47}{3}$ sq. units

Chapter 9

Differential Equations

Question 1.
If $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$, then
(a) $\frac{x}{y}+y^{2}=c$
(b) $\frac{y}{x}+x^{2}=c$
(c) $\frac{x}{y}-y^{2}=c$
(d) $\frac{y}{x}-x^{2}=c$

Question 2.

The solution of $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{\sqrt{1+x^{2}}}$ is
(a) $y=\frac{1+x^{2}}{x}+\frac{c}{x}$
(b) $y=\frac{\sqrt{1+x^{2}}}{x}+\frac{c}{x}$
(c) $y=\frac{x}{\sqrt{1+x^{2}}}+c x$
(d) none of these

Question 3.

The solution of the differential equation, $x^{2} \frac{d y}{d x} \cdot \cos \frac{1}{x}-y \sin \frac{1}{x}=-1$, where $y \rightarrow-1$ as $x \rightarrow \infty$, is
(a) $y=\sin \frac{1}{x}-\cos \frac{1}{x}$
(b) $y=\frac{x+1}{x \sin \frac{1}{x}}$
(c) $y=\cos \frac{1}{x}+\sin \frac{1}{x}$
(d) $y=\frac{x+1}{x \cos \frac{1}{x}}$

Question 4.
The degree of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right)$ is
(a) 1
(b) 2
(c) 3
(d) not defined

Question 5.
The order and degree of the differential
equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{4}}+x^{\frac{1}{5}}=0$ respectively are
(a) 2 and not defined
(b) 2 and 2
(c) 2 and 3
(d) 3 and 3

Question 6.

Integrating factor of the differential equation
$\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$ is
(a) $-x$
(b) $\frac{x}{1+x^{2}}$
(c) $\sqrt{1-x^{2}}$
(d) $\frac{1}{2} \log \left(1-x^{2}\right)$

Question 7.
If $\frac{d y}{d x}=\sin (x+y)+\cos (x+y), y(0)=0, \quad$ then
$\tan \frac{x+y}{2}=$
(a) $e^{x}-1$
(b) $\frac{e^{x}-1}{2}$
(c) $2\left(e^{x}-1\right)$
(d) $1-e^{x}$

Question 8.
The solution of differential equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ is
(a) $\left(e^{y}+1\right) \sin x=c$
(b) $e^{x} \sin x=c$
(c) $\left(e^{x}+1\right) \cos x=c$
(d) none of these

Question 9.
The solution of the differential equation $d y d x=x 1+x 2$ is
(a) $y=\frac{1}{2} \log \left|2+x^{2}\right|+c$
(b) $y=\frac{1}{2} \log (1+x)+c$
(c) $y=\log \left(\sqrt{1+x^{2}}\right)+c$
(d) none of these

Question 10.
The Solution of $\cos (x+y) d y=d x$ is
(a) $y=\tan \left(\frac{x+y}{2}\right)+C$
(b) $y=\cos ^{-1}\left(\frac{y}{x}\right)+C$
(c) $y=x \sec \left(\frac{y}{x}\right)+C$
(d) none of these

Question 11.
If $\frac{d y}{d x}=\frac{x+y}{x}, y(1)=1$, then $y=$
(a) $x+\ln x$
(b) $x^{2}+x \ln x$
(c) $x e^{x-1}$
(d) $x+x \ln x$

Question 1.
A unit vector perpendicular to the plane of $\stackrel{\pi}{a}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\ddot{b}=4 \hat{i}+3 \hat{j}-\hat{k}$ is
(a) $\frac{4 \hat{i}+3 \hat{j}-\hat{k}}{\sqrt{26}}$
(b) $\frac{2 \hat{i}-6 \hat{j}-\hat{k}}{7}$
(c) $\frac{3 \hat{i}-2 \hat{j}+6 \hat{k}}{7}$
(d) $\frac{2 \hat{i}-3 \hat{j}-6 \hat{k}}{7}$

Question 2.
The area of parallelogram whose adjacent sides are $\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ and $+2 \hat{\imath}+\hat{\jmath}-4 \hat{k}$ is
(a) 10 V 6
(b) 5 V 6
(c) 10 V 3
(d) 5 V 3

Question 3.
If $A B \times A C=2 \hat{\imath}-4 \hat{\jmath}+4 \hat{k}$, then the are of $\triangle A B C$ is
(a) 3 sq. units
(b) 4 sq. units
(c) 16 sq. units
(d) 9 sq. units

Question 4.
A vector of magnitude 5 and perpendicular to $(\hat{i}-2 \hat{j}+\hat{k})$ and $(2 \hat{i}+\hat{j}-3 \hat{k})$ is
(a) $\frac{5 \sqrt{3}}{3}(\hat{i}+\hat{j}+\hat{k})$
(b) $\frac{5 \sqrt{3}}{3}(\hat{i}+\hat{j}-\hat{k})$
(c) $\frac{5 \sqrt{3}}{3}(\hat{i}-\hat{j}+\hat{k})$
(d) $\frac{5 \sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})$

Question 5.

$|a \times b|^{2}+|a \cdot b|^{2}=144$ and $|a|=4$, then $|b|$ is equal to
(a) 12
(b) 3
(c) 8
(d) 4

Question 6.
If $\frac{\pi}{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \stackrel{n}{b}=1$ and $\vec{a} \times \ddot{b}=\hat{j}-\hat{k}$, then \ddot{b} is
(a) $i-\hat{j}+\hat{k}$
(b) $2 \hat{j}-\hat{k}$
(c) \hat{i}
(d) $2 \hat{i}$

Question 7.
If $|a|=5,|b|=13$ and $|a \times b|=25$, find $a . b$
(a) ± 10
(b) ± 40
(c) ± 60
(d) ± 25

Question 8.
If O is origin and C is the mid point of $A(2,-1)$ and $B(-4,3)$, then the value of $O C$ is
(a) $\hat{\imath}+\hat{\jmath}$
(b) $\hat{\imath}-\hat{\jmath}$
(c) $-\hat{\imath}+\hat{\jmath}$
(d) $-\hat{\imath}-\hat{\jmath}$

Question 9.
The summation of two unit vectors is a third unit vector, then the modulus of the difference of the unit vector is
(a) V3
(b) $1-\sqrt{ } 3$
(c) $1+\sqrt{ } 3$
(d) $-\sqrt{ } 3$

Question 10.
Let ${ }_{a}^{\pi}=\hat{i}+\hat{j}-\hat{k}, b=\hat{i}-\hat{j}+\hat{k}$ and \hat{c} be a unit vector perpendicular to \tilde{a}^{a} and coplanar with \tilde{a}^{a} and \ddot{b}, then \hat{c} is
(a) $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
(b) $\frac{1}{\sqrt{2}}(\hat{j}-\hat{k})$
(c) $\frac{1}{\sqrt{6}}(\hat{i}-2 \hat{j}+\hat{k})$
(d) $\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}+\hat{k})$

Question 11.
If a and \ddot{h} are unit vectors enclosing an angle θ and $\left|a^{a}+b\right|<1$, then
(a) $\theta=\frac{\pi}{2}$
(b) $\theta<\frac{\pi}{3}$
(c)
$\pi \geq \theta>\frac{2 \pi}{3}$
(d) $\frac{\pi}{3}<\theta<\frac{2 \pi}{3}$

Question 12.
The vectors from origin to the points A and B are $a=2 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ and b $=2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$, respectively then the area of triangle $O A B$ is
(a) 340
(b) $\sqrt{ } 25$
(c) $V 229$
(d) $\frac{1}{2} \sqrt{ } 229$

Chapter 11

Three Dimensional Geometry

Question 1.

The angle between the line $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$

Question 2.
The angle between the lines passing through the points (4, 7, 8), (2 , $3,4)$ and $(-1,-2,1),(1,2,5)$ is
(a) 0
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$

Question 3.
Equation of the plane passing through three points A, B, C with position vectors

$$
-6 \hat{i}+3 \hat{j}+2 \hat{k}, 3 \hat{i}-2 \hat{j}+4 \hat{k}, 5 \hat{i}+7 \hat{j}+3 \hat{k}
$$

(a) ${ }_{r}^{\mathrm{r}} .(\hat{i}-\hat{j}-2 \hat{k})+23=0$
(b) $\stackrel{\pi}{r} \cdot(\hat{i}+\hat{j}+7 \hat{k})=23$
(c) $\quad \underset{r}{\mathrm{r}} .(\hat{i}+\hat{j}-7 \hat{k})+23=0$
(d) $\underset{r}{r} \cdot(\hat{i}-\hat{j}-7 \hat{k})=23$

Question 4.
Find the equation of plane passing through the points $P(1,1,1), Q(3$, $-1,2), R(-3,5,-4)$.
(a) $x+2 y=0$
(b) $x-y=2$
(c) $-x+2 y=2$
(d) $x+y=2$

Question 5.
The vector equation of a plane passing through the intersection of
the planes $r \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=6$ and $r \cdot(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})=-5$ and the point $(1,1,1)$ is
$\begin{array}{ll}\text { (a) } \\ r \\ r \\ (3 \hat{i}+4 \hat{j} & 5 \hat{k})=1\end{array}$ (b) $\hat{r} \cdot(8 \hat{i}+5 \hat{j}+2 \hat{k})=99$
(c) $\quad \underset{r}{r} \cdot(20 \hat{i}+23 \hat{j}+26 \hat{k})=69$
(d) $\quad \stackrel{\pi}{r}$. $(20 \hat{i}-23 \hat{j}-26 \hat{k})=69$

Question 6.

The lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$
are
(a) coplanar
(b) non-coplanar
(c) perpendicular
(d) None of the above

Question 7.

The equation of the plane through the point $(0,-4,-6)$ and $(-2,9,3)$ and perpendicular to the plane $x-4 y-2 z=8$ is
(a) $3 x+3 y-2 z=0$
(b) $x-2 y+z=2$
(c) $2 x+y-z=2$
(d) $5 x-3 y+2 z=0$

Question 8.
The shortest distance between the lines

$$
\stackrel{\bar{a}}{r}=-(\hat{i}+\hat{j}+\hat{k}) \lambda(2 \hat{i}+3 \hat{j}+4 \hat{k}) \text { and }
$$

$$
\vec{r}=-\hat{i}+\mu(3 \hat{i}+4 \hat{j}+5 \hat{k}) \text { is }
$$

(a) 1
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{6}}$

Question 9.
Find the angle between the line $\stackrel{\pi}{r}=\hat{i}+2 \hat{j}-\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k}) \quad$ and \quad the plane $\stackrel{\pi}{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$.
(a) $\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$
(b) $\sin ^{-1}\left(\frac{2}{3}\right)$
(c) $\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
(d) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Question 10.

The distance of the plane $r \cdot\left(\frac{2}{7} \hat{\imath}+\frac{3}{7} \hat{\jmath}-\frac{6}{7} \hat{k}\right)=1$ from the origin is
(a) 1
(b) 7
(c) $\frac{1}{7}$
(d) None of these

Question 11.

The equation of the straight line passing through the point (a, b, c) and parallel to Z-axis is
(a) $\frac{x-a}{1}=\frac{y-b}{1}=\frac{z-c}{0}$
(b) $\frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{1}$
(c) $\frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0}$
(d) $\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}$

Question 12.
The point $A(1,2,3), B(-1,-2,-1)$ and $C(2,3,2)$ are three vertices of a parallelogram $A B C D$. Find the equation of $C D$.
(a) $\frac{x}{1}=\frac{y}{2}=\frac{z}{2}$
(b) $\frac{x+2}{1}=\frac{y+3}{2}=\frac{z-2}{2}$
(c) $\frac{x}{2}=\frac{y}{3}=\frac{z}{2}$
(d) $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-2}{2}$

Chapter 12

Linear Programming

Question 1.
$Z=20 x_{1}+20 x_{2}$, subject to $x_{1} \geq 0, x_{2} \geq 0, x_{1}+2 x_{2} \geq 8,3 x_{1}+2 x_{2} \geq 15$,
$5 x_{1}+2 x_{2} \geq 20$. The minimum value of Z occurs at
(a) $(8,0)$
(b) $\left(\frac{5}{2}, \frac{15}{4}\right)$
(c) $\left(\frac{7}{2}, \frac{9}{4}\right)$
(d) $(0,10)$

Question 2.
$Z=7 x+y$, subject to $5 x+y \geq 5, x+y \geq 3, x \geq 0, y \geq 0$. The minimum value of Z occurs at
(a) $(3,0)$
(b) $\left(\frac{1}{2}, \frac{5}{2}\right)$
(c) $(7,0)$
(d) $(0,5)$

Question 3.
Minimize $Z=20 x_{1}+9 x_{2}$, subject to $x_{1} \geq 0, x_{2} \geq 0,2 x_{1}+2 x_{2} \geq 36,6 x_{1}+$ $x_{2} \geq 60$.
(a) 360 at $(18,0)$
(b) 336 at $(6,4)$
(c) 540 at $(0,60)$
(d) 0 at $(0,0)$

Question 4.
$Z=8 x+10 y$, subject to $2 x+y \geq 1,2 x+3 y \geq 15, y \geq 2, x \geq 0, y \geq 0$. The minimum value of Z occurs at
(a) $(4.5,2)$
(b) $(1.5,4)$
(c) $(0,7)$
(d) $(7,0)$

Question 5.
$Z=4 x_{1}+5 x_{2}$, subject to $2 x_{1}+x_{2} \geq 7,2 x_{1}+3 x_{2} \leq 15, x_{2} \leq 3, x_{1}, x_{2} \geq 0$.
The minimum value of Z occurs at
(a) $(3.5,0)$
(b) $(3,3)$
(c) $(7.5,0)$
(d) $(2,3)$

Question 6.
The maximum value of $f=4 x+3 y$ subject to constraints $x \geq 0, y \geq 0$, $2 x+3 y \leq 18 ; x+y \geq 10$ is
(a) 35
(b) 36
(c) 34
(d) none of these

Question 7.
Objective function of a L.P.P.is
(a) a constant
(b) a function to be optimised
(c) a relation between the variables
(d) none of these

Question 8.
The optimal value of the objective function is attained at the points
(a) on X-axis
(b) on Y-axis
(c) which are comer points of the feascible region
(d) none of these

Question 9.

In solving the LPP:
"minimize $f=6 x+10 y$ subject to constraints $x \geq 6, y \geq 2,2 x+y \geq 10, x$ $\geq 0, y \geq 0$ " redundant constraints are
(a) $x \geq 6, y \geq 2$
(b) $2 x+y \geq 10, x \geq 0, y \geq 0$
(c) $x \geq 6$
(d) none of these

Question 10.
Region represented by $x \geq 0, y \geq 0$ is
(a) first quadrant
(b) second quadrant
(c) third quadrant
(d) fourth quadrant

Question 1.

Find the probability of throwing atmost 2 sixes in 6 throws of a single die.
(a) $\frac{35}{18}\left(\frac{5}{6}\right)^{3}$
(b) $\frac{35}{18}\left(\frac{5}{6}\right)^{4}$
(c) $\frac{18}{29}\left(\frac{2}{3}\right)^{4}$
(d) $\frac{18}{29}\left(\frac{2}{3}\right)^{3}$

Question 2.
A die is thrown again and again until three sixes are obtained. Find the probability of obtaining third six in the sixth throw of the die.
(a) $\frac{625}{23329}$
(b) $\frac{621}{25329}$
(c) $\frac{625}{23328}$
(d) $\frac{620}{23328}$

Question 3.
A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replecement the probability of getting exactly one red ball is
(a) $\frac{45}{196}$
(b) $\frac{135}{392}$
(c) $\frac{15}{56}$
(d) $\frac{15}{29}$

Question 4.
A die is thrown and card is selected a random from a deck of 52 playing cards. The probability of gettingan even number on the die and a spade card is
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{1}{8}$
(d) $\frac{3}{4}$

Question 5.
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability, that both cards are queens, is
(a) $\frac{1}{13} \times \frac{1}{13}$
(b) $\frac{1}{13}+\frac{1}{13}$
(c) $\frac{1}{13} \times \frac{1}{17}$
(d) $\frac{1}{13} \times \frac{4}{51}$

Question 6.
P has 2 children. He has a son, Jatin. What is the probability that Jain's sibling is a brother?
(a) $\frac{1}{3}$
(b) $\frac{1}{4}$
(c) $\frac{2}{3}$
(d) $\frac{1}{2}$

Question 7.
If A and B are 2 events such that $P(A)>0$ and $P(b) \neq 1$, then $P\left(A^{-} / B^{-}\right)=$
(a) $1-P(A \mid B)$
(b) $1-P\left(A / B^{-}\right)$
(c) $\frac{1-P(A \cup B)}{P(B)}$
(d) $\frac{1(\overline{A)}}{P(B)}$

Question 8.
If two events A and B area such that $P(\bar{A})=0.3, P(B)=0.4$ and $P(B \mid A \cup \bar{B})=$
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{2}{5}$
(d) $\frac{1}{4}$

Question 9.
If E and F are events such that $0<P(F)<1$, then
(a) $P(E \mid F)+P\left(E^{-} \mid F\right)=1$
(b) $P(E \mid F)+P\left(E \mid F^{-}\right)=1$
(c) $P\left(E^{-} \mid F\right)+P\left(E \mid F^{-}\right)=1$
(d) $P\left(E \mid F^{-}\right)+P\left(E^{-} \mid F^{-}\right)=0$

Question 10.
$P(E \cap F)$ is equal to
(a) $P(E) \cdot P(F \mid E)$
(b) $P(F) . P(E \mid F)$
(c) Both (a) and (b)
(d) None of these

Question 11.

If three events of a sample space are E, F and G, then $P(E \cap F \cap G)$ is equal to
(a) $P(E) P(F \mid E) P(G \mid(E \cap F))$
(b) $P(E) P(F \mid E) P(G \mid E F)$
(c) Both (a) and (b)
(d) None of these

