(1) INTERNATIONAL SCHOOL

MBS INTERNATIONAL SCHOOL
SECTOR-11, DWARKA
PRACTICE PAPER
SESSION 2019-20
MATHEMATICS
CLASS- XI

Time allowed: $1 \frac{1}{2}$ Hours

Maximum Marks: 40

General Instructions:

- Read all the questions carefully.
- All the questions are compulsory.
- Questions 1 to 10 in Section-A are Very Short Answer Objective Type Questions carrying 1 mark each.
- Questions 11 to 13 in Section-B are Short Answer Type Questions carrying 2 marks each.
- Questions 14 to 16 in Section-B are Long Answer I Type Questions carrying 4 marks each.
- Questions 17to 18 in Section-B are Long Answer II Type Questions carrying 6 marks each.

SECTION - A

1 If A and B are two sets, then $A \cap(A \cup B)$ equals to
(a) A
(b) B
(c) \varnothing
(d) $A \cap B$.

2 When $A=\emptyset$, then number of elements in $P(A)$ is \qquad
3 Let $n(A)=m$ and $n(B)=n$. Then, the total number of relations that can be defined from A to B is
(a) m^{n}
(b) $n^{m}-1$
(c) $m n-1$
(d) $2^{m n}$.

4 Find the domain of $f(x)=\sqrt{a^{2}-x^{2}}(a>0)$.
5 If $\tan \theta=3$ and θ lies in third quadrant, then find the value of $\cos \theta$.
6 If $\sin x+\cos x=1$, then the value of $\sin 2 x$ is \qquad
7 If $x, y \in R$, then $x+i y$ is a non- real complex number, if
(a) $x=0$
(b) $y=0$
(c) $x \neq 0$
(d) $y \neq 0$.

8 The locus of a point for which $\mathrm{x}=0$ is \qquad
9 Find the sum of the series: $1+\frac{4}{5}+\frac{16}{25} \ldots \ldots \ldots$ to ∞.

Reduce the equation $3 x-4 y-12=0$ into the intercept form

SECTION-B

Write the negation of the compound statement: 6 is divisible by 2 and 3 .

Find the value of n , if ${ }^{n} p_{5}=42^{n} p_{3}, \mathrm{n}>4$.
OR

How many words each of 3 vowels and 2 consonants can be formed from the letters of the word "INVOLUTE"?

Find the real values of ${ }^{\prime} \theta^{\prime}$, for which $z=\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ is purely real.

SECTION-C

Find the mean, standard deviation and variance of the first n natural numbers.
Using induction, Prove that $\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+-------+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$, for all $n \in N$.

Find a, if the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are equal.

SECTION-D

(i) Find the values of p and q , for which

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, \text { if } x<\pi / 2 \\
p, \text { if } x=\pi / 2 \quad \text { if } \lim _{x \rightarrow \frac{\pi}{2}} f(x) \text { is exist. } \\
\frac{q(1-\sin x)}{(\pi-2 x)^{2}}, \text { if } x>\pi / 2
\end{array}\right.
$$

(ii) Evaluate: $\lim _{x \rightarrow 0}\left(\frac{\sin 2 x+\sin 3 x}{2 x+\sin 3 x}\right)$
(a) If 4-digit numbers greater than 5000 are randomly formed from the digits $0,1,3,5$ and 7 , what is the probability of forming a number divisible by 5 when
(i) the digits may be repeated? (ii) the repetition of digits not allowed?
(b) Find the derivative of: (i) $f(x)=3 \sec x-4 \operatorname{cosec} x)(-2 \sin x+5 \cos x)$
(ii) $f(x)=\frac{x}{x^{2}+a^{2}}$ with respect to x .

