

MBS INTERNATIONAL SCHOOL SECTOR-11, DWARKA SESSION- 2019-20 PRACTICE PAPER MATHEMATICS CLASS - IX

Time allowed: $1\frac{1}{2}$ Hours

(a) ASA

Maximum Marks: 40

1

1

1

1

1

General Instructions:

- Read all the questions carefully.
- The question paper consists of 40 questions divided into four sections A, B, C & D. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- Use of calculator is not permitted.

SECTION-A

1. In the given figure, the congruency rule used in proving $\angle ACD \cong \angle ADB$ is

(d) RHS

- 2. The value of k, if (x 1) is a factor of $4x^3 + 3x^2 4x + k$, is (a) 1 (b) 2 (c) -3 (d) 3
- 3. Find the angle which is four times its complement is 10° less than twice its complement.
- 4. If x + 2 is a factor of $x^3 2ax^2 + 16$, then value of a is _____
- 5. In the figure, if O is the centre of a circle, then find the measure of $\angle ACB$

(b) SAS

6. The curved surface area of a right circular cylinder of height 21 cm is 957cm². Find the diameter of the 1 base of the cylinder.

7.	The number 1.101001000100001 is anumber.	• (8) ³ is 1 o which axis 1 s a unique solution, if x and y are 1 ECTION-B 2					
8.	If $3 + 5 - 8 = 0$, then the value of $(3)^3 + (5)^3 - (8)^3$ is	1					
9.	The line represented by $y + 10 = 0$ is parallel to which axis	1					
10.	Fill in the blank: The equation $2x + 5y = 7$ has a unique solution, if x and y are	1					
SECTION-B							
11.	If $x - k^2$ is a factor of $x^2 - k^2 x + k$ -3 find the value of k.	2					
12.	Find 'p' if $(\frac{1}{2}, \frac{3}{2})$ is a solution of 3 p x + 7y = 15	2					
13	Plot $A(3, 0) = B(0, 2) = C(-3, 0)$ and $D(0, -2)$ on a graph paper. Join A to B B to C C to D and D to A to						

13. Plot A(3, 0), B(0, 2), C(-3, 0) and D(0, -2) on a graph paper. Join A to B, B to C, C to D and D to A to form a quadrilateral ABCD. Is ABCD is rhombus? Also write the equations of AC and BD.

SECTION-C

- 14. Express 0. $\overline{6}$ and 0.3 $\overline{35}$ in the form of $\frac{p}{q}$ and find the value of 0.3 $\overline{35}$ 0. $\overline{6}$. Where p and q are 3 integers.
- 15. PQRS is a quadrilateral. A line through S parallel to PR meets QR produced in X. Show that ar (PQRS) $3 = ar (\Delta PXQ)$.

- 16. If adjacent angles A and B of parallelogram ABCD are in the ratio 7:5, then find all the angles of parallelogram.
- 17. The perimeter of an isosceles triangle is 30 cm and each of its equal sides measures 12 cm. Find the area of the triangle.

3

3

2

SECTION-D

- 18. Construct a triangle PQR in which, $\angle Q = 105^{\circ}$, $\angle R = 30^{\circ}$ and PQ+QR+PR = 13 cm. Justify the construction.
- 19. A cone, hemisphere and a cylinder stand on the same base and have equal height. Find the ratio of their:

(a) Volumes,

(b) Curved surface areas.

Or

A group of 21 school students shared the ice-cream brick in lunch break to celebrate the Independence Day. If each one takes a hemispherical scoop of ice-cream of 3 cm radius, find the volume of ice-cream eaten by them.

(a) If the dimensions of the ice-cream brick are 10cm \times 10cm \times 12cm, how much volume of cream is left?

(b) Which value is depicted by the students?

(Use $\pi = 22/7$)

20. Without drawing a histogram, construct a frequency polygon for the given frequency distribution:

Class Interval	0-10	10-20	20-30	30-40	40-50
Frequency	50	40	45	25	5

4

4

4