MBS INTERNATIONAL SCHOOL
 SECTOR-11, DWARKA
 SESSION- 2019-20
 PRACTICE PAPER
 MATHEMATICS
 CLASS - IX

Time allowed: $1 \frac{1}{2}$ Hours
Maximum Marks: 40

General Instructions:

- Read all the questions carefully.
- The question paper consists of 40 questions divided into four sections $A, B, C \& D$. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- Use of calculator is not permitted.

SECTION-A

1. In the given figure, the congruency rule used in proving $\angle \mathrm{ACD} \cong \angle \mathrm{ADB}$ is

(a) ASA
(b) SAS
(c) AAS
(d) RHS
2. The value of k, if $(x-1)$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$, is
(a) 1
(b) 2
(c) -3
(d) 3
3. Find the angle which is four times its complement is 10° less than twice its complement.
4. If $x+2$ is a factor of $x^{3}-2 a x^{2}+16$, then value of a is \qquad
5. In the figure, if O is the centre of a circle, then find the measure of $\angle \mathrm{ACB}$

6. The curved surface area of a right circular cylinder of height 21 cm is $957 \mathrm{~cm}^{2}$. Find the diameter of the base of the cylinder.
7. The number $1.101001000100001 \ldots$ is a \qquad number.
8. If $3+5-8=0$, then the value of $(3)^{3}+(5)^{3}-(8)^{3}$ is \qquad
9. The line represented by $y+10=0$ is parallel to which axis \qquad -.
10. Fill in the blank: The equation $2 x+5 y=7$ has a unique solution, if x and y are \qquad

SECTION-B

11. If $\mathrm{x}-\mathrm{k}^{2}$ is a factor of $\mathrm{x}^{2}-\mathrm{k}^{2} \mathrm{x}+\mathrm{k}-3$ find the value of k .
12. Find ' p ' if $\left(\frac{1}{2}, \frac{3}{2}\right)$ is a solution of $3 p x+7 y=15$
13. Plot $\mathrm{A}(3,0), \mathrm{B}(0,2), \mathrm{C}(-3,0)$ and $\mathrm{D}(0,-2)$ on a graph paper. Join A to B, B to C, C to D and D to A to form a quadrilateral ABCD . Is ABCD is rhombus? Also write the equations of AC and BD .

SECTION-C

14. Express $0 . \overline{6}$ and $0.3 \overline{35}$ in the form of $\frac{p}{q}$ and find the value of $0.3 \overline{35}-0 . \overline{6}$. Where p and q are integers.
15. PQRS is a quadrilateral. A line through S parallel to $P R$ meets $Q R$ produced in X. Show that ar (PQRS) $=\operatorname{ar}(\triangle \mathrm{PXQ})$.

16. If adjacent angles A and B of parallelogram $A B C D$ are in the ratio 7:5, then find all the angles of parallelogram.
17. The perimeter of an isosceles triangle is 30 cm and each of its equal sides measures 12 cm . Find the area of the triangle.

SECTION-D

18. Construct a triangle PQR in which, $\angle Q=105^{\circ}, \angle R=30^{\circ}$ and $\mathrm{PQ}+\mathrm{QR}+\mathrm{PR}=13 \mathrm{~cm}$. Justify the construction.
19. A cone, hemisphere and a cylinder stand on the same base and have equal height. Find the ratio of their:
(a) Volumes,
(b) Curved surface areas.

Or

A group of 21 school students shared the ice-cream brick in lunch break to celebrate the Independence Day. If each one takes a hemispherical scoop of ice-cream of 3 cm radius, find the volume of ice-cream eaten by them.
(a) If the dimensions of the ice-cream brick are $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 12 \mathrm{~cm}$, how much volume of cream is left?
(b) Which value is depicted by the students?
(Use $\pi=22 / 7$)
20. Without drawing a histogram, construct a frequency polygon for the given frequency distribution:

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	50	40	45	25	5

