St. Mary's School, Dwarka
 Holiday Homework
 Class - XI
 Subject: Physics

Objective:

1) To revise the concepts already taught in the class .
2) To enhance your numerical ability .

Homework: Write the four experiments of section A based on the least count of different instruments and calculation of volume with a vernier calliper in your practical file and submit the file on reopening of School. Please file these assignments in a folder.

General instructions :

1 mark questions should be answered in 20 to 25 words.
2 mark questions should be answered in 30 to 50 words.

3 mark questions should be answered in 60 to 80 words.

UNITS AND MEASUREMENT

Q1. Write the dimensional formula of torque.
Q2. Name the physical quantity for each of the following dimensional formula (i) $\left(\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right)$, (ii) $\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right)$ (iii) ($\mathrm{ML}^{2} \mathrm{~T}^{-3}$) and (iv) ($\mathrm{ML}^{0} \mathrm{~T}^{-2}$)

Q3. In Poiseuille's equation, $\mathrm{V}=\pi \rho r^{4} / 8 \eta l$, determine the dimension of η where p is pressure, r is radius V is volume per unit time of the liquid flowing out of a tube of length l

Q4. Find the value of the following up to the appropriate significant figures :
(i) 53.312-53.3
(ii) 2.02×23

Q5. The resistivity ρ of the material depends on the length l, diameter d and resistance R of the wire. Derive the relation for resistivity using the method of dimensions.

Q6. The escape velocity v of a body depends upon (i) the acceleration due to gravity g of the planet and (ii) the radius R of the planet. Establish dimensionally the expression for escape velocity v.

Q7. Using the principle of homogeneity of dimensions, find which of the following is correct.
(i) $\mathrm{T}^{2}=4 \pi^{2} \mathrm{r}^{2}$,
(ii) $\mathrm{T}^{2}=\frac{4 \pi^{2} r^{3}}{G}$ and
(iii) $\mathrm{T}^{2}=\frac{4 \pi^{3} r^{2}}{4 M}$

Q8. In an experiment to measure the focal length of a concave mirror, the value of the focal length in successive observations turns out to be $17.3 \mathrm{~cm}, 17.8 \mathrm{~cm}, 18.3 \mathrm{~cm}, 18.2 \mathrm{~cm}, 17.9 \mathrm{~cm}$ and 18.0 cm . Calculate the mean absolute error and percentage error. Express the result of the focal length with percentage error.

MOTION IN A STRAIGHT LINE

Q1. Draw position - time graph for (i) Negative velocity and (ii) Positive velocity.
Q2. A train 500 m long crosses a bridge of 1000 m in 10 s . Find the average speed of the train when it just crosses the bridge.

Q3. Find the displacement of the particle when its velocity is zero.
Q4. Suppose two trains A and B are moving with uniform velocity along parallel tracks in the same direction and the velocity of A and B is $60 \mathrm{~km} / \mathrm{h}$ in the east direction and $65 \mathrm{~km} / \mathrm{h}$ in the east respectively. Find the relative velocity of B w.r.t. A.

Q5. The velocity of a particle is given by equation $v=4+2\left(C_{1}+C_{2} t\right)$ where C_{1} and C_{2} are constant. Find the initial velocity and acceleration of the particle.

Q6. At $t=0$, a particle is at rest at the origin. Its acceleration is $2 \mathrm{~m} / \mathrm{s}^{2}$ for the first 3 s and $-2 \mathrm{~m} / \mathrm{s}^{2}$ for next 3 s , plot the acceleration versus time and velocity versus time graph.

Q7. Two parallel rail tracks run North - South. Train A moves North with a speed of $54 \mathrm{kmh}^{-1}$ and train B moves South with a speed of $90 \mathrm{kmh}^{-1}$. What is the:
(i) relative velocity of B with respect to A ?
(ii) relative velocity of the ground with respect to B ?
(iii) velocity of a monkey as observed by a man standing on the ground (Given : The monkey is running on the roof of the train A with a velocity of $18 \mathrm{kmh}^{-1}$ with respect to train A and in a direction opposite to that of A)

Q8. Define relative velocity of an object w.r.t. another. Draw position - time graphs of two objects moving along a straight line, when their relative velocity is (i) zero and (ii) non - zero.

MOTION IN A PLANE

Q1. If $|A+B|=|A-B|$, what is the angle between A and B ?
Q2. Two forces whose magnitudes are in the ratio 3:5, give a resultant of 28 N . If the angle of their inclination is 60°. Find the magnitude of each force.

Q3. Determine that vector which when added to the resultant of $\mathrm{A}=3 \hat{\imath}-5 \hat{\jmath}+7 \hat{k}$ and $\mathrm{B}=2 \hat{\imath}+4 \hat{\jmath}-3 \hat{k}$ gives unit vector along y - direction.

Q4. The velocity of a particle is given by the equation, $v=4 t^{2}+5 t+6 \mathrm{~cm} / \mathrm{s}$. Find (i) the change in velocity of the particle during the time interval between $\mathrm{t}_{1}=2 \mathrm{~s}$ and $\mathrm{t}_{2}=4 \mathrm{~s}$ (ii) the average acceleration during the same interval and (iii) the instantaneous acceleration at $\mathrm{t}_{2}=4 \mathrm{~s}$.

