Class -XII

Subject: Mathematics

WORKSHEET-1A

CHAPTER-2 INVERSE TRIGONOMETRIC FUNCTIONS

Instructions:

Question 1-22 carry 1 mark each.

Mark the correct alternative in each of the following:

- $\sin^{-1} x \cos^{-1} x = \frac{\pi}{6}, \text{ then } x =$ Q.1 If
 - (a) $\frac{1}{2}$
- (b) $\frac{\sqrt{3}}{2}$
- $-\frac{1}{2}$
- (d) none of these

- $Q.2 \qquad \sin \left[\cot^{-1} \left(\tan \left(\cos^{-1} x\right)\right)\right]_{is \ equal \ to}$
 - (a) x
- (b) $\sqrt{1-x^2}$
- $\frac{1}{\mathbb{X}}$
- (d) none of these

Q.3 The number of solutions of the equation

$$\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$$

- (a) 2
- (b) 3
- (c) 1
- (d) none of these

$$\alpha = \tan^{-1} \left(\tan \frac{5\pi}{4} \right) \text{and } \beta = \tan^{-1} \left(-\tan \frac{2\pi}{3} \right), \text{ then}$$

- (a) 4a = 3b
- (b) 3a = 4b
- $\alpha \beta = \frac{7\pi}{12}$
- (d) none of these
- Q.5 If x < 0, y < 0 such that xy = 1, then $tan^{-1}x + tan^{-1}y$ equals
 - (a) $\frac{\pi}{2}$
- (b) $\frac{n}{2}$
- (c) -p
- (d) none of these

Q.6 If
$$u = \cot^{-1} \sqrt{\tan \theta} - \tan^{-1} \sqrt{\tan \theta}$$
 then, $\tan \left(\frac{\pi}{4} - \frac{u}{2}\right) =$

- (a) √tan θ
- (b) √cot θ
- (c) tanq
- (d) cot q

Q.7 If
$$\alpha = \tan^{-1}\left(\frac{\sqrt{3}x}{2y-x}\right), \beta = \tan^{-1}\left(\frac{2x-y}{\sqrt{3}y}\right), \text{ then a - b = }$$

- (a) $\frac{\pi}{6}$
- (b) $\frac{\pi}{3}$
- $(c)^{\frac{\pi}{2}}$
- $-\frac{\pi}{3}$

Q.8
$$\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{2}{11}$$
 is equal to

- (a) 0
- (b) 1/2
- (c) -1
- (d) none of these

Q.9 If
$$\cos^{-1}\frac{x}{2} + \cos^{-1}\frac{y}{3} = \theta$$
, then $9x^2 - 12xy \cos q + 4y^2$ is equal to

- (a) 36
- (b) $-36 \sin^2 q$
- (c) $36 \sin^2 q$
 - (d) $36 \cos^2 q$

Q.10 If
$$\tan^{-1} 3 + \tan^{-1} x = \tan^{-1} 8$$
, then $x =$

- (a) 5
- (b) 1/5
- (c) 5/14

(d) 14/5

Q.11 The value of
$$\sin^{-1}\left(\cos\frac{33\pi}{5}\right)$$
 is

- (a) $\frac{3\pi}{5}$ (b) $-\frac{\pi}{10}$

Q.12 The value of
$$\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\left(\sin\frac{5\pi}{3}\right)$$

- $(b) \frac{5\pi}{3}$
- (d) 0

Q.13
$$\sin \left\{ 2\cos^{-1}\left(\frac{-3}{5}\right) \right\}$$
 is equal to

Q.14 If
$$q = \sin^{-1} {\sin(-600^{\circ})}$$
, then one of the possible value of q is

- (b) $\frac{\pi}{2}$

Q.15. If
$$3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$$
 then x is equal to

- (b) $\frac{1}{\sqrt{3}}$
- (c)√3

- If $4 \cos^{-1} x + \sin^{-1} x = p$, then the value of x is
- (b) $\frac{1}{\sqrt{2}}$

- If $\tan^{-1} \frac{x+1}{x-1} + \tan^{-1} \frac{x-1}{x} = \tan^{-1} (-7)$, then the value of x is
 - (a) 0
- (b) -2
- (c) 1
- (d) 2

- If $\sin^{-1} x \cos^{-1} x = p/6$, then x =Q.18
- (b) $\frac{\sqrt{3}}{2}$
- $\frac{1}{(c)} \frac{1}{2}$

In a DABC, if C is a right angle, then Q.19

$$tan^{-1}\!\left(\!\frac{a}{b+c}\right)\!+tan^{-1}\!\left(\!\frac{b}{c+a}\right)\!=$$

- (a) $\frac{\pi}{3}$

- (d) $\frac{\pi}{6}$

- The value of $\sin\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)_{is}$ Q.20
 - (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{3}}$
- (c) $\frac{1}{2\sqrt{2}}$

- $\cot\left(\frac{\pi}{4} 2\cot^{-1}3\right) =$
 - (a) 7
- (b) 6
- (c) 5
- (d) none of these

Q.22
$$\tan^{-1}(\cot q) = 2q$$
, then $q =$

(a)
$$\pm \frac{\pi}{3}$$

(b)
$$\pm \frac{\pi}{4}$$

(c)
$$\pm \frac{\pi}{6}$$

(d) none of these

WORKSHEET-1B

Instructions:

Question 1-10 carry 2 marks each.

Questions 11-20 carry 4 marks each.

	QUESTIONS	ANSWERS
Q1	Find the principal value of $\frac{\sin^{-1}\left(\frac{1}{2}\right) \text{and } \sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)}{\left(\frac{1}{2}\right)^{2}}$	$-\frac{\pi}{4}$
Q2	Find the principal values of $\cos^{-1} \frac{\sqrt{3}}{2}$ and $\cos^{-1} \left(-\frac{1}{2}\right)$.	$\frac{2\pi}{3}$
Q3	Find the principal values of $\cot^{-1} \sqrt{3}$ and $\cot^{-1} (-1)$.	$\frac{3\pi}{4}$
Q4	Evaluate each of the following: $\sin^{-1}\left(\sin\frac{\pi}{3}\right)_{(ii)}\cos^{-1}\left(\cos\frac{2\pi}{3}\right)$ $\tan^{-1}\left(\tan\frac{\pi}{4}\right)$ $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) \qquad \cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ $(iv) \qquad \tan^{-1}\left(\tan\frac{3\pi}{4}\right)$	$\frac{\pi}{(i)} \frac{2\pi}{3} \frac{\pi}{(iii)} \frac{\pi}{4}$ $\frac{\pi}{(iv)} \frac{5\pi}{3} \frac{5\pi}{(vi)} - \frac{\pi}{4}$

Q5	Prove that: $\frac{\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} = \pi}{16}$	
Q6	Prove that $\frac{\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{8}{17} = \cos^{-1} \frac{84}{85}$	
Q7	Evaluate the following:	. (i) 3π - 10 (ii) 5 - 2π(iii) 4π -
	(i) $\sin^{-1}(\sin 10)$ (ii) $\sin^{-1}(\sin 5)$	10 (iv) $2\pi - 6$
	(iii) $\cos^{-1}(\cos 10)$ (iv) $\tan^{-1}\{\tan(-6)\}$	
		π
Q8	Simplify each of the following: $\sin^{-1} \left(\frac{\sin x + \cos x}{\sqrt{2}} \right), -\frac{\pi}{4} < x < \frac{\pi}{4}$	$(i) \begin{array}{c} x + \overline{4} \\ x - \frac{\pi}{4} \end{array}$
	$\cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right), \frac{\pi}{4} < x < \frac{5\pi}{4}$	4
Q9	Prove that: $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3) = 15$	
Q)	Prove that:	
Q10	Prove that : $\sin[\cot^{-1}{\{\cos(\tan^{-1}x)\}}] = \sqrt{\frac{x^2 + 1}{x^2 + 2}}$	
	(ii) $\cos[\tan^{-1}{\{\sin(\cot^{-1}x)\}}] = \sqrt{\frac{x^2+1}{x^2+2}}$	
Q11	$\int_{1}^{\infty} y = \cot^{-1}\left(\sqrt{\cos x}\right) - \tan^{-1}\left(\sqrt{\cos x}\right),$	
	prove that $\sin y = \frac{\tan^2 \frac{x}{2}}{2}$.	
	. X . V	
Q12	,	
	prove that $\frac{x^2}{a^2} - \frac{2xy}{ab}\cos\alpha + \frac{y^2}{b^2} = \sin^2\alpha$	

Q13	Prove that: $\tan^{-1} \frac{1-x}{1+x} - \tan^{-1} \frac{1-y}{1+y} = \sin^{-1} \frac{y-x}{\sqrt{1+x^2}}$	
Q14	Prove that $(\pi, 1, \dots, n)$	
	$\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} = \frac{2b}{a}$	1 1
Q15	Solve the following equations: $\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$	$(ii) \frac{\pm \frac{1}{\sqrt{2}}}{\sqrt{2}} = (ii) \frac{1}{6}$ $\frac{4}{3} = \frac{\pi}{(iv)} \frac{\pi}{4}$
	$\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$	(iii) $\frac{3}{3}$ (iv) $\frac{4}{4}$
	(iii) $\tan^{-1} \frac{x-1}{x+1} + \tan^{-1} \frac{2x-1}{2x+1} = \tan^{-1} \frac{23}{36}$	
	(iv) $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \cos ec x)$	1
Q16	Solve the following equations: $\sin^{-1} \frac{3x}{5} + \sin^{-1} \frac{4x}{5} = \sin^{-1} x$. (i) ± 1 (ii) $\frac{1}{2}$ (iii) $1 \pm \sqrt{2}$
	(ii) $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$	
	(iii) $\sin[2\cos^{-1}\{\cot(2\tan^{-1}x)\}] = 0$	
Q17	$\frac{\cos^{-1}\frac{x}{2} + \cos^{-1}\frac{y}{3} = \alpha,}{\text{then}}$	
	prove that $9x^2 - 12xy \cos \alpha + 4y^2 = 36 \sin^2 \alpha$.	
Q18	Solve:	$(1)2-\sqrt{3}$ (2) -1/12
	$(1)\cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) + \tan^{-1}\left(\frac{2x}{x^2-1}\right) = \frac{2\pi}{3}$	

Q19	If $(tan^{-1}x)^2 + (cot^{-1}x)^2 = \frac{5\pi^2}{8}$, then find x	-1
Q20	If $\tan^{-1}\left(\frac{1}{1+1.2}\right) + \tan^{-1}\left(\frac{1}{1+2.3}\right) \dots \tan^{-1}\left(\frac{1}{1+n(n+1)}\right) =$	$\frac{n}{n+2}$
	$Tan^{-1}(x)$, then find x	

WORKSHEET-2A

CHAPTER-3 AND 4

MATRICES AND DETERMINANTS

Instructions:

Question 1-24 carry 1 mark each.

Mark the correct alternative in each of the following:

Q.1 If
$$5 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then adj A is

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\begin{pmatrix} d & b \\ c & a \end{pmatrix}$$

$$\begin{pmatrix} d & c \\ b & a \end{pmatrix}$$

- Q.2 If A is a singular matrix, then adj A is
 - (a) non-singular
- (b) singular
- (c) symmetric (d) not defined
- Q.3 If A, B are two $n \times n$ non-singular matrices, then
 - (a) AB is non-singular

(b) AB is singular

- (d) (AB)⁻¹ does not exist
- (c) $(AB)_a^{-1} = _0A_0^{-1}B_0^{-1}$ (d)

 If $A = \begin{bmatrix} 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$, then the value of | adj A | is
 - (a) a^{27}
- (b) a^9
- (c) a^6
- (d) a^2

- (a) 20
- (b) 100

- If $A^5 = O$ such that $A^n \neq I$ for $1 \le n \le 4$, then $(I A)^{-1}$ equals Q.8
 - (a) A^4
- (b) A^3
- (c) I+A
- (d) none of these
- Q.10 If A satisfies the equation $x^3 5x^2 + 4x + \lambda = 0$, then A^{-1} exists if
 - (a) $\lambda \neq 1$
- (b) $\lambda \neq 2$
- (c) $\lambda \neq -1$
- (d) $\lambda \neq 0$

- If for the matrix A, $A^3 = I$, then $A^{-1} =$
 - (a) A^2
- (b) A^{3}
- (c) A
- (d) none of these
- Q.12 If A and B are square matrices such that $B = -A^{-1}BA$, then (A+B) =
 - (a) O
- (b) $A^2 + B^2$ (c) $A^2 + 2AB + B^2$ (d) A + B

- - (a) 5A
- (b) 10A
- (c) 16A
- (d) 32A

- $\begin{bmatrix} -1 & -2 & b \end{bmatrix}$ is a singular matrix, if the value of b is Q.14
 - (a) -3
- (b) 3
- (c) 0
- (d) non-existent
- If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is
 - (a) dⁿ
- (b) d^{n-1}
- (c) d^{n+1}
- (d) d
- If A is a matrix of order 3 and |A| = 8, then |adjA| =
 - (a) 1
- (b) 2
- (c) 2^3
- (d) 2^6

- Q.17 If $A^2 A + I = 0$, then the inverse of A is
 - (a) A^{-2}
- (b) A + I
- (c) I A
- (d) A I
- Q.18 If A is a square matrix such that $A^2 = I$, then A^{-1} is equal to
 - (a) A + I
- (b) A
- (c) 0
- (d) 2A
- Q.19 Let $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X be a matrix such that A = BX, then X is equal
 - $\frac{1}{2} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix} \qquad \frac{1}{2} \begin{bmatrix} -2 & 4 \\ 3 & 5 \end{bmatrix} \qquad \text{(c)} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$
- (d) none of these
- If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $A^{-1} = kA$, then k equals
 - (a) 19
- (b) 1/19
- (c) 19
- (d) -1/19

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$$

Q.21 If

- (a) 3
- (b) 0
- (c) -3
- (d) 1

Q.22 If a matrix A is such that $3A^3 + 2A^2 + 5A + I = 0$, then A^{-1} is equal to

- (a) $-(3A^2 + 2A + 5)$ (b) $3A^2 + 2A + 5$ (c) $3A^2 2A 5$ (d) none of these

WORKSHEET-2B

Instructions:

Question 1-20 carry 4 mark each.

Q1 If
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$
, find the determinant of the matrix $A^2 - 2A$.

Q2 Evaluate the determinant
$$\theta$$
 1 $\Delta = \begin{vmatrix} -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{vmatrix}$ Also, prove that $2 \le \Delta \le 4$.

Q3 For what value of x the matrix
$$A = \begin{bmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{bmatrix}$$
 is singular?

Q4 Without expanding prove that
$$\begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0$$

Q6 For any scalar p prove that
$$\begin{vmatrix} x & y & x^{2} & y & y^{2} &$$

Q7
$$\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = x^3$$

Q8 Show that
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

Q9 Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = abc + bc + ca + ab$$

Q10 Show that
$$\begin{vmatrix} b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2$$

Q11 If a, b, c are all positive and are pth, qth and rth terms of a G.P., then show that $\begin{vmatrix} \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0$

Q12
$$\begin{vmatrix}
-2a & a+b & a+c \\
b+a & -2b & b+c \\
c+a & c+b & -2c
\end{vmatrix} = 4(b+c)(c+a)(a+b)$$

Q13
$$\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$$

Q14
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$$
. Hence solve the system of equations

$$x + 2y - 3z = -4$$
, $2x + 3y + 2z = 2$, $3x - 3y - 4z = 11$

Q15
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, \text{ find A}^{-1} \text{ and hence solve the system of linear equations}$$

$$x + 2y + z = 4$$
, $-x + y + z = 0$, $x - 3y + z = 2$

 $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it to solve the system of Q16 Determine the product

equations:

Q19

$$x - y + z = 4$$
, $x - 2y - 2x = 9$, $2x + y + 3z = 1$

Determine the product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ and use it to solve the system of Q17

equations: x + 3z = 9, -x + 2y - 2z = 4, 2x - 3y + 4z = -3

Q18 Solve the following system of equations, using matrix method

$$x + 2y + z = 7$$
, $x + 3z = 11$, $2x - 3y = 1$

 $A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$ satisfies the equation $x^2 - 6x + 17 = 0$. Hence, find A^{-1} .

Find the matrix A satisfying the matrix equation

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

CHAPTER 5 CONTINUITY AND DIFFERENTIABILITY

WORKSHEET-3A

Instructions:

Question 1-14 carry 1 mark each.

Mark the correct alternative in each of the following:

Q.1. If,
$$\mathbf{f}(x) = \begin{cases} \mathbf{a}x^2 + \mathbf{b} &, & 0 \le x < 1 \\ 4 &, & x = 1 \\ x + 3 &, & 1 < x \le 2 \end{cases}$$

then the value of (a, b) for which f(x) cannot be continuous at x = 1, is

- (a) (2, 2) (b) (3, 1) (c) (4, 0) (d) (5, 2)

Q.2 If the function f(x) defined by

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{\log(1+3x) - \log(1-2x)}{x}, & x \neq 2 \\ k, & x = 0 \text{ is continuous at } x = 0, \text{ then } k = 0 \end{cases}$$

- (a) 1
- (b) 5
- (c) -1
- (d) none of these

O.3 The value of k which makes

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 continuous at $x = 0$, is

Q.4 If
$$f(x) = \begin{cases} \frac{1 - \cos x}{x \sin x}, & x \neq 0 \end{cases}$$
 then at $x = 0$, $f(x)$ is
$$\frac{1}{2}, & x = 0$$

- (a) continuous and differentiable
- (b) differentiable but not continuous
- (c) continuous but not differentiable
- (d) neither continuous nor differentiable
- Q.5 The set of points where the function f(x) given by

 $f(x) = |x - 3| \cos x$ is differentiable, is

- (a) R
- (b) $R-\{3\}$
- (c)(0, Y)
- (d) none of these

Q.6 Let
$$f(x) =$$

$$\begin{cases}
1 & x \leq -1 \\
x & -1 < x < 1 \\
0 & x \geq 1
\end{cases}$$
Then, f is

(a) continuous at x = -1

(b) differentiable at x = -1

- (c) everywhere continuous
- (d) everywhere differentiable
- Q.7 If $f(x) = \frac{\log_{x^{3}}(\log x)}{n}$, then f'(x) at x = e is
 - (a) 0
- (b) 1
- (c) 1/e
- (d) 1/2e

```
Q.8 If x = a \cos^3 q, y = a \sin^3 q, then \sqrt{1 + \left(\frac{dy}{dx}\right)^2} =
```

- (a) $tan^2 q$
- (b) $\sec^2 q$ (c) $\sec q$
- (d) | sec q |

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right), then \frac{dy}{dx} =$$
Q.9 If

- (a) $-\frac{2}{1+x^2}$ (b) $\frac{2}{1+x^2}$
- (c) $\frac{1}{2-x^2}$ (d) $\frac{2}{2-x^2}$

$$Q.10 \quad \frac{d}{dx} \left\{ tan^{-i} \left(\frac{\cos x}{1 + \sin x} \right) \right\} \text{ equals}$$

- (a) 1/2
- (b) -1/2
- (c) 1
- (d) -1

Q.11 The derivative of
$$\cos^{-1}(2x^2-1)$$
 with respect to $\cos^{-1} x$ is

- (a) 2
- (c) 2/x
- (d) $1 x^2$

Q.12 If
$$y = \frac{\log \sqrt{\tan x}}{\sqrt{\tan x}}$$
, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is given by

- (b) 1
- (c) 0
- $\frac{1}{2}$ (d) $\frac{1}{2}$

Q.13 If
$$\sin^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = \log a \text{ then } \frac{dy}{dx} \text{ is equal to}$$

- (a) $\frac{x^2 y^2}{x^2 + y^2}$ (b) $\frac{y}{x}$
- (d) none of these

Q.14 If
$$y = \tan^{-1} \left(\frac{\sin x + \cos x}{\cos x - \sin x} \right)$$
, then $\frac{dy}{dx}$ is equal to

	(a) $\frac{1}{2}$ (b) 0 (c) 1	(d) none of these
	WORKSHEET-3B	
Instr	uctions:	
Ques	tion 1-6 carry 2 mark each.	
Ques	tion 6-20 carry 4 mark each.	
	QUESTIONS	ANSWERS
Q1	Differentiate the following functions w.r.t. x :	(i) $2x \cos(x^2+1)$ (ii) $e^{\sin x} \times \cos x$
	(i) $\sin(x^2+1)$ (ii) $e^{\sin x}$	(iii) cot x
	(iii) $\log \sin x$	
Q2	Differentiate the following functions w.r.t. x :	$\frac{1}{(i) e^{e^x} \times e^x} $ (ii) $\frac{\log_7 x.(\log_e 7)^2}{}$
	(i) $e^{e^{x}}$ (ii) $\log_7(\log_7 x)$	
	(iii) $\log_{x} 2$	$\frac{1}{(\text{iii})} - \frac{1}{(\log_2 x)^2} \times \frac{1}{x \log_e 2}$
		2
Q3	$y = \cos^{-1}(2x) + 2\cos^{-1}\sqrt{1 - 4x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx}$	$\sqrt{1-4x^2}$
Q4	$y = \tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right), \text{ find } \frac{dy}{dx}$	$\frac{1}{2\sqrt{1-x^2}}$
Q4		$2\sqrt{1-x^2}$
Q5	$y = \cos^{-1}\left\{\frac{2x - 3\sqrt{1 - x^2}}{\sqrt{13}}\right\}, \text{ find } \frac{dy}{dx}$	$\frac{-1}{\sqrt{1-x^2}}$
Q ₃	If $\sqrt{13}$ dx	$\sqrt{1-x^2}$
Q6	Differentiate the following with respect to x:	$\frac{2^{x+1}}{2} - \log 2$
🗸 🖯	Differentiate the following with respect to x. $\sin^{-1}\left(\frac{2^{x+1}}{1+x^{x}}\right)$	$\frac{2^{x+1}}{1+4^x}\log 2$. (i) -1 (ii) $\frac{1}{1+4^x}\log 2$
	(i) $\cos^{-1}(\sin x)$ (ii) $\sin^{-1}\left(\frac{1+4^x}{1+4^x}\right)$	
Q7	If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ and $x \neq y$, prove that	
	1	

	dv	
	$\frac{dy}{dx} = -\frac{1}{(x+1)^2}$	
	$(x^2 - y^2) = (xy^{-1})^2$	
Q8	$\frac{\cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right) = \tan^{-1} a}{\text{for that } \frac{dy}{dx} = \frac{y}{x}}$	
00	$\frac{dy}{-\sin^2(a+y)}$	
Q 9	If $\sin y = x \sin (a + y)$, prove that $\frac{dx}{dx} = \frac{1}{\sin a}$	
Q10	$\frac{dy}{dy} = \sqrt{1 - y^2}$	
(If $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$	
Q11	Find the derivative of $\frac{\sqrt{x}(x+4)^{3/2}}{(4x-3)^{4/3}}$ w.r.t x.	$\frac{\sqrt{x}(x+4)^{3/2}}{(4x-3)^{4/3}} \left\{ \frac{1}{2x} + \frac{3}{2(x+4)} - \frac{16}{3(4x-3)} \right\}$
	w.i.t x.	
Q12	If $x^m y^n = (x + y)^{m+n}$, prove that $\frac{dy}{dx} = \frac{y}{x}$.	
012	Differentiate the following functions with respect to w	
Q13	Differentiate the following functions with respect to x: $v^{x^2-3} + (v^2-3)^{x^2}$ $v = v^{\sin x} + (\sin x)^x$	
	(i) $x^{x^2-3} + (x-3)^{x^2}$ (ii) $y = x^{\sin x} + (\sin x)^x$	
Q14	Differentiate $\sin^{-1}(2x^{\sqrt{1-x^2}})$ with respect to \tan^{-1}	
	$\left(\frac{x}{\sqrt{1-x^2}}\right)$, if $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$	
	(1+ax)	
Q15	Differentiate $\tan^{-1} \left(\frac{1+ax}{1-ax} \right)_{\text{with respect to }} \sqrt{1+a^2x^2}$	
016	$v = \log \left(x + \sqrt{x^2 + a^2} \right)$	
Q16	$y = \log \left\{ x + \sqrt{x^2 + a^2} \right\}, \text{ prove that}$	
	$(x^2 + a^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = 0$	
Q17	$y = x^{x}, \text{ prove that } \frac{d^{2}y}{dx^{2}} - \frac{1}{y} \left(\frac{dy}{dx}\right)^{2} - \frac{y}{x} = 0$	
O10		
Q18	If $x = a \cos \theta + b \sin \theta$ and $y = a \sin \theta - b \cos \theta$, prove	
	that	

	$y^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$	
Q19	$\frac{d^2y}{dy}$	
	If $y = \sin(\sin x)$, prove that $dx^2 + \tan x - dx + y \cos^2 x$ = 0	
Q20	$\frac{x = \sin\left(\frac{1}{a}\log y\right)}{\text{If}}, \text{ show that}$	
	$(1-x^2)y_2 - xy_1 - a^2y = 0$	

WORKSHEET-4A

Chapter - APPLICATIONS OF DERIVATIVES

Instructions:

Question 1-18 carry 1 mark each.

Mark the correct alternative in each of the following:

 $V = \frac{4}{3}\pi r^3$, at what rate in cubic units is V increasing when r = 10 and $\frac{dr}{dt} = 0.01$? dr

- (a) π
- (b) 4π
- (c) 40π
- (d) $4\pi/3$

Side of an equilateral triangle expands at the rate of 2 cm/sec. The rate of increase of its area Q 2. when each side is 10 cm is

- (a) $10\sqrt{2} \text{ cm}^2/\text{sec}$ (b) $10\sqrt{3} \text{ cm}^2/\text{sec}$ (c) $10 \text{ cm}^2/\text{sec}$ (d) $5 \text{ cm}^2/\text{sec}$

Q 3.	The radius of a spher	re is changing at the rat	e of 0.1 cm/sec. The ra	te of change of its surface
	area when the radius	is 200 cm is		
	(a) $8\pi \text{cm}^2/\text{sec}$	(b) $12\pi \text{cm}^2/\text{sec}$	(c) 160π cm ² /sec	(d) 200 cm ² /sec
Q 4.	If the function $f(x) =$	$2x^2$ - $kx + 5$ is increasi	ng on [1, 2], then k lies	s in the interval
	(a) $(-\infty, 4)$	$(b) (4, \infty)$	(c) $(-\infty, 8)$	$(d) (8, \infty)$
Q 5.	The point on the curv	$y = x^2 - 3x + 2$ where	e tangent is perpendicu	lar to y = x is
	(a) $(0, 2)$	(b) (1,0)	(c) (-1,6)	(d) (2, -2)
Q 6.	The value of c in Lag	grange's mean value the	eorem for the function	f(x) = x (x - 2) when
	$x \in [1, 2]$ is			
	(a) 1	(b) 1/2	(c) 2/3	(d) 3/2
Q 7.	The value of c in Rol	lle's theorem for the fur	$f(x) = x^3 - 3x \text{ in } t$	he interval $[0, \sqrt{3}]$ is
	(a) 1	(b) -1	(c) 3/2	(d) 1/3
Q 8.	The approximate value	ue of $(33)^{1/5}$ is		
	(a) 2.0125	(b) 2.1	(c) 2.01	(d) none of these
Q 10.	The circumference of	f a circle is measured a	s 28 cm with an error of	of 0.01 cm. The percentage
	error in the area is		1	
	(a) $\frac{1}{14}$	(b) 0.01	$\frac{1}{7}$ (c) $\frac{1}{7}$	(d) none of these

	(a) $x < 2$	(b) $x > 2$	(c) $x > 3$	(d) $1 < x < 2$	
Q 12.	radius is equal to	of area of a circle is equal $\frac{1}{\pi}$ (b) $\frac{1}{\pi}$ unit	$\frac{\pi}{}$	ge of its diameter, then its $(d) \pi \text{ units}$	
Q 13.	In a sphere the rate of	f change of volume is			
	(a) π times the rate o	f change of radius			
	(b) surface area times the rate of change of diameter				
	(c) surface area times	s the rate of change of	radius (d) none of th	ese	
Q 14.	In a sphere the rate of	f change of surface are	ea is		
	(a) 8π times the rate of	of change of diameter	(b) 2π times the rate	of change of diameter	
	(c) 2π times the rate of	of change of radius	(d) 8π times the rate	of change of radius	
Q 15.			e $y^2 = 4x$, if the value of	of m is $\frac{1}{2}$	
	(a) 1	(b) 2	(c) 3	(a) ²	
Q 16.	The normal at the po	int (1, 1) on the curve 2	$2y + x^2 = 3$ is		

Q 11. Function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically decreasing when

Q 17. The normal to the curve $x^2 = 4y$ passing through (1,2) is

(a) x + y = 3 (b) x - y = 3 (c) x + y = 1 (d) x - y = 1

(a) x + y = 0

(b) x - y = 0 (c) x + y + 1 = 0 (d) x - y = 1

Q 18. The points on the curve $9y^2 = x^3$, where the normal to the curve make equal intercepts with the

axes are
$$\begin{pmatrix}
4, \pm \frac{8}{3}
\end{pmatrix}$$
(b)
$$\begin{pmatrix}
4, -\frac{8}{3}
\end{pmatrix}$$
(c)
$$\begin{pmatrix}
4, \pm \frac{3}{8}
\end{pmatrix}$$
(d)
$$\begin{pmatrix}
\pm 4, \frac{3}{8}
\end{pmatrix}$$

WORKSHEET-4B

Instructions:

Question 1-16 carry 4 mark each.

Question 16-20 carry 6 mark each.

	QUESTIONS	ANSWERS
Q1	A balloon, which always remains spherical, has a variable	Ans.
	radius. Find the rate at which its volume is increasing with	$196 \pi\mathrm{cm}^2$
	respect to its radius when the radius is 7 cm.	
Q2	The total cost C(x) associated with the production of	Ans
	x units of an item is given by:	30.02
	$C(x) = 0.005 x^3 - 0.02 x^2 + 30x + 5000$	
	Find the marginal cost when 3 units are produced, whereby	
	marginal cost we mean the instantaneous rate of change of	
	total cost at any level of output	
Q3	An air force plane is ascending vertically at the rate of 100	Ans
	km/h. If the radius of the earth is r km, how fast is the area	$\frac{200\pi r^3}{\left(r+5\right)^2}$
	of the earth, visible from the plane, increasing at 3 minutes	
	after is started ascending? Given that the visible area A at	
	height h is given by $A = 2\pi r^2 \frac{h}{r+h}$	

Q4	A man 2 meters high, walks at a uniform speed of 6 meters	Ans
	per minute away from a lamp post, 5 meters high. Find the	4m
	rate at which the length of his shadow increases	
Q5	An inverted cone has a depth of 10 cm and a base of radius 5 cm. Water is poured into it at the rate of 3/2 c.c. per minute.	Ans $\frac{3}{8\pi}$ cm/min
	Find the rate at which the level of water in the cone is rising	811
	when the depth is 4 cm.	
Q6	A water tank has the slope of an inverted right circular with its axis vertical and vertex lower most. Its semi-vertical	Ans $\frac{35}{88} \text{m/h}$
	angle is tan ⁻¹ (0.5). Water is poured into it at a constant rate of 5 cubic meter per hour. Find the rate at which the level of	
	the water is rising at the instant when the depth of water in	
	the tank is 4 m.	
Q7	Find the point on the curve $y = 2x^2 - 6x - 4$ at which the tangent is parallel to the x-axis.	(3/2, -7/2)
Q8	Find the points on the curve $9y^2 = x^3$ where normal to the curve makes equal intercepts with the axes.	(4, 8/3) and (4, -8/3)
Q9	Show that the line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-x/a}$ at	
	the point where it crosses the y-axis.	

Find the equations of the tangent and the normal to the curve $y = \frac{x-7}{(x-2)(x-3)}$ at the point, where it cuts x-axis.	Tangent = $x - 20y - 7 =$ 0, normal = $20x + y -$ 140 = 0
Find the equation of the tangent line to the curve $y = \sqrt{5x-3}$ -2 which is parallel to the line $4x - 2y + 3 = 0$.	Ans $80x - 40y - 103 = 0$
Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point $(1, 2)$.	Ans $x + y - 3 = 0$
Find the intervals in which $f(x) = -x^2 - 2x + 15$ is increasing or decreasing	Increasing = $(-\infty, -10)$, decreasing = $(-1, \infty)$
Find the intervals in which the function $f(x)$ is (i) increasing, (ii) decreasing : $f(x) = 2x^3 - 9x^2 + 12x + 15$	(i) Increasing = $(-\infty, 1) \cup (2, \infty),$ (ii) decreasing = $(1, 2)$
Find the intervals in which the function f given by $f(x) = \sin x + \cos x, 0 \le x \le 2\pi \text{ is increasing or decreasing}$	increasing $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4}, 2\pi\right)$ $\operatorname{decreasing} = \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$
	$y = \frac{x-7}{(x-2)(x-3)}$ at the point, where it cuts x-axis. Find the equation of the tangent line to the curve $y = \sqrt{5x-3} - 2$ which is parallel to the line $4x - 2y + 3 = 0$. Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point $(1, 2)$. Find the intervals in which $f(x) = -x^2 - 2x + 15$ is increasing or decreasing Find the intervals in which the function $f(x)$ is (i) increasing, (ii) decreasing: $f(x) = 2x^3 - 9x^2 + 12x + 15$ Find the intervals in which the function $f(x)$ given by

	Find the intervals in which $f(x) = 2 \log (x - 2) - x^2 + 4x + 1$	increasing =
Q16	is increasing or decreasing.	(2, 3)
		decreasing = $(3, \infty)$
Q17	Find the maximum and the minimum values, if any, of the	Ans.
	following functions	(i) min = -1 and max. =
	(i) $f(x) = 3x^2 + 6x + 8$, $x \in R$ (ii) $f(x) = - x - x $	does not exist (ii) min =
	$1 +5$ for all $x \in R$	does not exist, max. = 5
	(iii) $f(x) = \sin 3x + 4$, $x \in (-\pi/2, \pi/2)$ (iv) $f(x) = x^3 + 1$	(iii) $min = 3$, $max = 5$
	for all $x \in R$ [NCERT]	(iv) min = does
	$(v) f(x) = \sin(\sin x) \text{ for all } x \in R \qquad (vi) f(x) = x + x $	not exist, max = does
	$3 \mid \text{ for all } x \in R$	not exist
		(v) min = -sin 1, max =
		sin 1 (vi) min
		= 0, max = does not
		exist
Q18	Find the points at which the function f given by $f(x) = (x - x)^{-1}$	$\frac{2}{7}$ (ii) 2 (iii) -1
	$(2)^4 (x+1)^3$ has	
	(i) local maxima (ii) local minima	
	(iii) points of inflexion	
Q19	Find the points of local maxima or local minima if any of the	
	following functions. Also find the local maximum or local	
	minimum values, as the case may be:	

	(i) $f(x) = \sin x + \cos x$, where $0 < x < \frac{\pi}{2}$ (ii) $f(x)$			
	$= \sin x - \cos x$, where $0 < x < 2\pi$			
	(iii) $f(x) = \sin 2x$, where $0 < x < \pi$ (iv) $f(x)$			
	$= 2 \cos x + x, \text{ where } 0 < x < \pi$			
	$(v) f(x) = 2 \sin x - x, \frac{-\pi}{2} \le x \le \frac{\pi}{2}$			
Q20	(i) If the sum of the lengths of the hypotenuse and a side of a			
	right-angled triangles is given, show that the area of the			
	triangle is maximum when the angle between them is $\pi/3$.			
	(ii) A square piece of tin of side 24 cm is to be made into a			
	box without top by cutting a square from each corner and			
	folding up the flaps to form a box. What should be the side			
	of the square to be cut off so that the volume of the box is			
	maximum ? Also, find this maximum volume.			
	(iii_)Show that the height of the cylinder of maximum 2a			
	volume that can be inscribed in a sphere of radius a is $\sqrt{3}$.			
	(iv) Show that the volume of the larges cone that can be			
	inscribed in a sphere of radius R is 8/27 of the volume of the			
	sphere.			
	(v) Show that the volume of the greatest cylinder which can			
	be inscribed in a cone of height h and semi-vertical angle α 4			
	is $\frac{1}{27} \pi h^3 \tan^2 \alpha$. Also, show that height of the cylinder is $\frac{1}{3}$.			
	(vi) An open box with a square base is to be made from a			
	given quantity of cardboard of area c ² square units. Show			

that the maximum volume of the box is $6\sqrt{3}$ cubic units. (vii) An open tank with a square base and vertical sides is to be constructed from a metal sheet to hold a given quantity of water. Show that the cost of the material will be least when depth of the tank is half of its width.		
be constructed from a metal sheet to hold a given quantity of water. Show that the cost of the material will be least when	that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$ cubic units.	
water. Show that the cost of the material will be least when	(vii) An open tank with a square base and vertical sides is to	
	be constructed from a metal sheet to hold a given quantity of	
depth of the tank is half of its width.	water. Show that the cost of the material will be least when	
	depth of the tank is half of its width.	