St. Mary's School, Dwarka
 Holiday Homework
 Class XI
 Subject: Chemistry (043)

General Instructions :

(i) Question numbers 1 to 4 are objective type question and carry 1 mark each.
(ii) Question numbers 5 case study.
(iii) Question numbers 6 to 10 are short answer questions and carry 2 marks each(word limit : 50 60 words)
(iv) Question numbers 11 to 15 are short answer questions and carry 3 marks each(word limit : $80-100$ words)
Q. 1 The reaction of calcium with water is represented by the equation
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O}-\cdots---\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
What volume of H 2 at STP would be liberated when 8 gm of calcium completely reacts with water?
(a) $0.2 \mathrm{~cm}^{3}$
(b) $0.4 \mathrm{~cm}^{3}$
(c) $2240 \mathrm{~cm}^{3}$
(d) $4480 \mathrm{~cm}^{3} \quad 1$
Q. 2 Among the following groupings which represents the collection of isoelectronic species?
(a) $\mathrm{NO}^{+}, \mathrm{C}_{2}{ }^{2-}, \mathrm{O}_{2}{ }^{-}, \mathrm{CO}$
(b) $\mathrm{N}_{2}, \mathrm{C}_{2}{ }^{2-}, \mathrm{CO}, \mathrm{NO}$
(c) $\mathrm{CO}, \mathrm{NO}^{+}, \mathrm{CN}-\mathrm{C}_{2}{ }^{2-}$
(d) $\mathrm{NO}, \mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{O}_{2}^{-}$
Q. 3 How many number of σ - and π-bonds present in pent-4-en-1-yne ?
(a) 10, 3
(b) 4,9
(c) 3,10
(d) 9,4
1
Q. 4 The molar heat capacity of water at constant pressure is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1 kJ of heat is supplied to 100 g of water, which is free to expand. What is the increase in temperature of water?
(a) 6.6 K
(b) 1.2 K
(c) 2.4 K
(d) 4.8 K
1
Q. 5 Observe the table of the ionisation constants of some common polyprotic acid at 298 K . Answer the questions based on this table and related studied concepts.
The Ionisation Constants of Some Common Polyprotic Acids (298K)

Acid	Ka1	Ka2	Ka3
Oxalic acid	5.9×10^{-2}	6.4×10^{-5}	
Ascorbic acid	7.4×10^{-4}	1.6×10^{-12}	
Sulphurous acid	1.7×10^{-2}	6.4×10^{-8}	
Sulphuric acid	Very large	1.2×10^{-2}	
Carbonic acid	4.3×10^{-7}	5.6×10^{-11}	
Citric acid	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Phosphoric acid	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}

(a) Why is $\mathrm{K} a_{1}$ greater than $\mathrm{K} a_{2}$?
(b) Arrange $\mathrm{Ka}_{1}, \mathrm{Ka}_{2}$ and Ka_{3} in phosphoric acid.
(c) Why is $\mathrm{Ka}_{1} \ggg \mathrm{Ka}_{2}$ in sulphuric acid?
(d) Write expression for Ka_{1} and Ka_{2} and Ka of $\mathrm{H}_{2} \mathrm{CO}_{3}$.
(e) Out of oxalic acid and citric acid, which is stronger?
Q. 6 What is tautomerism? Give an example of tautomerism.
Q. 7 Write structural formulae for compounds named as-
(a) 1-Bromoheptane
(b) 5-Bromoheptanoic acid
2
Q. 8 Why does SO_{3} act as an electrophile ?
Q. 9 pH of a solution of a strong acid is 5.0. What will be the pH of the solutionobtained after diluting the given solution a 100 times?
Q. 10 Which transition in the hydrogen atomic spectrum will have the same wavelength as the transition, $\mathrm{n}=4$ to $\mathrm{n}=2$ of He^{+}spectrum?
Q. 11 How can you predict the following stages of a reaction by comparing the value of Kc and Qc ?
(i) Net reaction proceeds in the forward direction.
(ii) Net reaction proceeds in the backward direction.
(iii) No net reaction occurs.
Q. 12 Balance the following ionic equations by ion-electron method
(i) $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}+---\rightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ (acidic medium)
(ii) $\mathrm{MnO}_{4}^{-}+\mathrm{I}^{-}---\mathrm{MnO}_{2}+\mathrm{IO}_{3}^{-}$(basic medium)
Q. 13 What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, which has a density $1.84 \mathrm{~g} / \mathrm{cc}$. at $35^{\circ} \mathrm{C}$ and contains 98% by weight?
Q. 14 Define enthalpy of formation. Write the chemical equation of the formation of methanol. 3
Q. 15 Write the IUPAC name of the following compounds:
(i) o-xylene
(ii) Lactic acid
(iii) Acetophenone
(iv) Acetonitrile
(v) Methyl acetate
(vi) Acetamide

