ITL PUBLIC SCHOOL

Summer Engagement Program SUBJECT - MATHEMATICS CLASS - XI

(I) Complete the given 10 activities in the Maths Activity File

(II) Complete the assignment given below:

1) Which portion is represented by the following Venn diagram.

2) Which portion is represent by the following Venn diagram.

3) Write the following sets in roster form:

(i)
$$A = \{a_n : n \in \mathbb{N}, a_{n+1} = 3a_n \text{ and } a_1 = 2\}$$

(ii)
$$B = \{a_n : n \in \mathbb{N}, a_{n+2} = a_{n+1} + a_n, a_1 = a_2 = 1\}$$

4) Find the pairs of equal sets, from the following sets, if any, giving reasons.

$$A = \{0\}, B = \{x : x > 15 \text{ and } x < 5\}, C = \{x : x - 5 = 0\}, D = \{x : x^2 = 25\}$$

 $E = \{x : x \text{ is an integral positive root of equation } x^2 - 2x - 15 = 0\}$

5) Let $A = \{a,b,\{c,d\},e\}$. which of the following statements are false and why?

- $\{c,d\}\subset A$ (ii) $\{c,d\}\in A$ *(i)*
- (iii) $\{\{c,d\}\}\subset A$

- $a \in A$ (iv)
- (v) $a \subset A$ (vi) $\{a,b,e\} \subset A$
- $\{a,b,e\}\in A$ (vii)
- (viii) $\phi \in A$
- (ix) $\phi \in A$

- $\{\phi\}\subset A$ (x)
- 6) Show that $(A \cap B)' = A' \cup B'$...
- 7) Write the domain of the function $f(x) = \sqrt{x-2}$.
- 8) Write the domain and range of the function f(x) = |x|.
- 9) Write the domain and range of the function f(x) = [x].
- 10) If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$, $C = \{5, 6\}$, find $A \times (B \cup C)$, $A \times (B \cap C)$, $(A \times B) \cup (A \times C)$.
- 11) Let R be a relation on N defined by $R = \{(a,b): a,b \in N \text{ and } a = b^2\}$ Are the following true:

$$(a,a) \in R \text{ for all } a \in N$$
 (ii) $(a,a) \in R \text{ for } \Rightarrow (b,a) \in R \text{ (iii) } (a,a) \in R, (b,c) \in R \Rightarrow (a,c) \in R$

- 12) Let $f = \{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function described by the formula f(x) = ax + b for some integers a,b. Determine a,b.
- 13) Let $X = \{1,2,3,4\}$ and $Y = \{1,5,9,11,15,16\}$ Determine which of the following sets are functions from X to Y
- (a) $f_1 = \{(1,1), (2,11), 93, 1\}, (4,15)$
- (b) $f_2 = \{(1,1),(2,7),(3,5)\}$
- (c) $f_3 = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$
- 14) If $f(x) = x + \frac{1}{x}$, prove that $[f(x)]^3 = f(x^3) + 3f(\frac{1}{x})$.
- 15) If $f(x) = \frac{1}{2x+1}$, $x \neq -\frac{1}{2}$, then show that $f(f(x)) = \frac{2x+1}{2x+3}$, provided that $x \neq -\frac{3}{2}$.
- 16) Find the range of each of the following functions:

(i)
$$f(x) = \frac{1}{\sqrt{x-5}}$$
 (ii) $f(x) = \sqrt{16-x^2}$ (iii) $f(x) = \frac{x}{1+x^2}$ (iv) $f(x) = \frac{3}{2-x^2}$

- 17) Find the equation of the set of points which are equidistant from the points (1,2,3) and (3,2,-1).
- 18) Find the equation of the set of points P the sum of whose distances from A(4,0,0) and B(-4,0,0) is equal to 10.
- 19) Find the equation of set of points P such that $PA^2 + PB^2 = 2k^2$, where A and B are the points (3,4,5) and (-1,3,-7), respectively
- 20) The centroid of a triangle ABC is at the point (1,1,1). If the coordinates of A and B are (3,-5,7) and (-1,7,-6), respectively, find the coordinates of the point C.
- 21) Three vertices of a parallelogram ABCD are A(3,-1,2), B(1,2,-4) and C(-1,1,2). Find The coordinates of the fourth vertex.
- 22) Find the length of the medians of the triangle with vertices P(2a,2,6), Q(-4,3b,-10) and R(8,14,2c), then find the value of a,b, and c.
- 23) If A and B be the points (3,4,5) and (-1,3,-7), respectively, find the equation of the set of points P such that $PA^2 + PB^2 = k^2$, where k is constant.