ITL PUBLIC SCHOOL

Summer Engagement Program

SUBJECT - MATHEMATICS

CLASS - XI

(I) Complete the given 10 activities in the Maths Activity File
(II) Complete the assignment given below:

1) Which portion is represented by the following Venn diagram.

2) Which portion is represent by the following Venn diagram.

3) Write the following sets in roster form:
(i) $A=\left\{a_{n}: n \in N, a_{n+1}=3 a_{n}\right.$ and $\left.a_{1}=2\right\}$
(ii) $B=\left\{a_{n}: n \in N, a_{n+2}=a_{n+1}+a_{n}, a_{1}=a_{2}=1\right\}$
4) Find the pairs of equal sets, from the following sets, if any, giving reasons.

$$
A=\{0\}, B=\{x: x>15 \text { and } x<5\}, C=\{x: x-5=0\}, D=\left\{x: x^{2}=25\right\}
$$

$E=\left\{x: x\right.$ is an integral positive root of equation $\left.x^{2}-2 x-15=0\right\}$
5) Let $A=\{a, b,\{c, d\}, e\}$. which of the following statements are false and why?
(i) $\{c, d\} \subset A$
(ii) $\{c, d\} \in A$
(iii) $\{\{c, d\}\} \subset A$
(iv) $a \in A$
(v) $a \subset A$
(vi) $\{a, b, e\} \subset A$
(vii) $\{a, b, e\} \in A$
(viii) $\phi \in A$
(ix) $\quad \phi \in A$
(x) $\quad\{\phi\} \subset A$
6) Show that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} .$.
7) Write the domain of the function $f(x)=\sqrt{x-2}$.
8) Write the domain and range of the function $f(x)=|x|$.
9) Write the domain and range of the function $f(x)=[x]$.
10) If $A=\{1,2,3\}$ and $B=\{4,5\}, C=\{5,6\}$, find $A \times(B \cup C), A \times(B \cap C),(A \times B) \cup(A \times C)$.
11) Let R be a relation on N defined by $R=\left\{(a, b): a, b \in N\right.$ and $\left.a=b^{2}\right\}$ Are the following true:

$$
(a, a) \in R \text { for all } a \in N \quad \text { (ii) }(a, a) \in R \text { for } \Rightarrow(b, a) \in R \text { (iii) }(a, a) \in R,(b, c) \in R \Rightarrow(a, c) \in R
$$

12) Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function described by the formula $f(x)=a x+b$ for some integers a, b. Determine a, b.
13) Let $X=\{1,2,3,4\}$ and $Y=\{1,5,9,11,15,16\}$ Determine which of the following sets are functions from X to Y
(a) $f_{1}=\{(1,1),(2,11), 93,1\},(4,15)$
(b) $f_{2}=\{(1,1),(2,7),(3,5)\}$
(c) $f_{3}=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
14) If $f(x)=x+\frac{1}{x}$, prove that $[f(x)]^{3}=f\left(x^{3}\right)+3 f\left(\frac{1}{x}\right)$.
15) If $\mathrm{f}(\mathrm{x})=\frac{1}{2 \mathrm{x}+1}, \mathrm{x} \neq-\frac{1}{2}$, then show that $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\frac{2 \mathrm{x}+1}{2 \mathrm{x}+3}$, provided that $\mathrm{x} \neq-\frac{3}{2}$.
16) Find the range of each of the following functions :
(i) $f(x)=\frac{1}{\sqrt{x-5}}$
(ii) $f(x)=\sqrt{16-x^{2}}$
(iii) $f(x)=\frac{x}{1+x^{2}}$
(iv) $f(x)=\frac{3}{2-x^{2}}$
17) Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.
18) Find the equation of the set of points P the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10 .
19) Find the equation of set of points P such that $P A^{2}+P B^{2}=2 k^{2}$, where A and B are the points $(3,4,5)$ and $(-1,3,-7)$, respectively
20) The centroid of a triangle $A B C$ is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$, respectively, find the coordinates of the point C.
21) Three vertices of a parallelogram ABCD are $A(3,-1,2), B(1,2,-4)$ and $C(-1,1,2)$. Find The coordinates of the fourth vertex.
22) Find the length of the medians of the triangle with vertices $P(2 a, 2,6), Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the value of a, b, and c.
23) If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $P A^{2}+P B^{2}=k^{2}$, where k is constant.
